Nanostructured surfaces are common in nature and exhibit properties such as antireflectivity (moth eyes), self-cleaning (lotus leaf), iridescent colors (butterfly wings), and water harvesting (desert beetles). We now understand such properties and can mimic some of these natural structures in the laboratory. However, these synthetic structures are limited since they are not easily mass produced over large areas due to the limited scalability of current technologies such as UV-lithography, the high cost of infrastructure, and the difficulty in nonplanar surfaces. Here, we report a solution process based on block copolymer (BCP) self-assembly to fabricate subwavelength structures on large areas of optical and curved surfaces with feature sizes and spacings designed to efficiently scatter visible light. Si nanopillars (SiNPs) with diameters of ∼115 ± 19 nm, periodicity of 180 ± 18 nm, and aspect ratio of 2-15 show a reduction in reflectivity by a factor of 100, <0.16% between 400 and 900 nm at an angle of incidence of 30°. Significantly, the reflectivity remains below 1.75% up to incident angles of 75°. Modeling the efficiency of a SiNP PV suggests a 24.6% increase in efficiency, representing a 3.52% (absolute) or 16.7% (relative) increase in electrical energy output from the PV system compared to AR-coated device.
Microphase separation of block copolymer (BCPs) thin films has high potential as a surface patterning technique. However, the process times (during thermal or solvent anneal) can be inordinately long, and for it to be introduced into manufacturing, there is a need to reduce these times from hours to minutes. We report here BCP self-assembly on two different systems, polystyrene-b-polymethylmethacrylate (PS-b-PMMA) (lamellar- and cylinder-forming) and polystyrene-b-polydimethylsiloxane (PS-b-PDMS) (cylinder-forming) by microwave irradiation to achieve ordering in short times. Unlike previous reports of microwave assisted microphase segregation, the microwave annealing method reported here was undertaken without addition of solvents. Factors such as the anneal time and temperature, BCP film thickness, substrate surface type, etc. were investigated for their effect of the ordering behavior. The microwave technique was found to be compatible with graphoepitaxy, and in the case of the PS-b-PDMS system, long-range translational alignment of the BCP domains was observed within the topographic patterns. To demonstrate the usefulness of the method, the BCP nanopatterns were turned into an 'on-chip' resist by an initial plasma etch and these were used to transfer the pattern into the substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.