Upon single-crystal-to-single-crystal (SCSC) oxidation/reduction, reversible structural transformations take place between the anionic porous zeolite-like Cu(I) framework and a topologically equivalent neutral Cu(I)Cu(II) mixed-valent framework. The unique conversion behavior of the Cu(I) framework endowed it as a redox-switchable catalyst for the direct arylation of heterocycle C-H bonds.
Birnessite, a layered-structure MnO 2 , is an earth-abundant functional material with potential for various energy and environmental applications, such as water oxidation. An important feature of birnessite is the existence of Mn(III) within the MnO 2 layers, accompanied by interlayer charge-neutralizing cations. Using first-principles calculations, we reveal the nature of Mn(III) in birnessite with the concept of the small polaron, a special kind of point defect. Further taking into account the effect of the spatial distribution of Mn(III), we propose a theoretical model to explain the structure-performance dependence of birnessite as an oxygen evolution catalyst. We find an internal potential step which leads to the easy switching of the oxidation state between Mn(III) and Mn(IV) that is critical for enhancing the catalytic activity of birnessite. Finally, we conduct a series of comparative experiments which support our model.birnessite MnO 2 | small polaron | catalysis | water oxidation P hotoelectrochemical (PEC) splitting of water into H2 and O2 (artificial photosynthesis) provides an attractive way to harvest solar energy. The process consists of the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), both of which are facilitated with catalysts in practice. Currently, one of the biggest challenges is to develop a cheap and efficient catalyst for the former reaction with a low overpotential, which is still needed to overcome the kinetic barriers (already lowered by the catalyst) along the path from reactants to products. Birnessite, similar to the oxygen-evolving complex in Photosystem II for photosynthesis in regard to the coexistence of Mn(III) (nominal Mn 3+ ) and Mn(IV) (nominal Mn 4+ ) within its structure (1-3), has already shown a moderate catalytic performance with the overpotentials reported from 0.6 V to 0.8 V (4-8).Birnessite has the general formula Mx MnO2·1.5(H2O), composed of layers of edge-sharing MnO6 octahedra as shown in Fig. 1 for the hexagonal phase, and an interlayer of randomly distributed water molecules and metal (M) cations (like K + , Na + , and Ca 2+ ). With the charge balanced by the interlayer cations, some of the Mn cations within the MnO2 layer are reduced from Mn(IV) to Mn(III). The coexistence of Mn(IV) and Mn(III), and further the "balanced equilibrium" or low energy barrier between them, has been suspected to be a critical factor for its catalytic activity (1). The importance of the high-spin Mn(III), through its e 1 g electronic configuration, has been realized in other manganese oxides for OER catalysis (2, 9) and also follows the design principle of Suntivich et al. (10) that a near-unity eg occupancy may imply good OER catalytic activity. This easy switching of the oxidation state is also a typical behavior for the transition metal cation undergoing back and forth changes between several oxidation states in OER catalysts during the water oxidation cycle (11-13). OER catalysts like Co-and Ni-doped hematite (12) and cobalt oxides (13), as well as ...
Solvent templates induced Co-based metal-organic materials; conformational isomers {[Co2(pdpa)(CH3CN)(H2O)3]·CH3OH·H2O}n (1) and {[Co2(pdpa)(CH3CN)(H2O)3]}n (2) and {[Co5(pdpa)2(μ3-OH)2(H2O)6]·2H2O}n (3) [H4pdpa = 5,5'-(pentane-1,2-diyl)-bis(oxy)diisophthalic acid] were synthesized under the same solvothermal conditions except with different concentrations of cyclic ethers (1,4-dioxane or tetrahydrofuran) as structure-directing agents. Structural transformations from a three-dimensional (3D) framework of 1 containing channels with dimensions of ∼6 Å × 6 Å to a two-dimensional layer structure of 2 consisting of large open channels with a size of ∼15 Å × 8 Å and then to a 3D nonporous framework of 3, resulting from the different concentrations of cyclic ethers, were observed. The anion-π interactions between electron-efficient oxygen atoms of cyclic ethers and electron-deficient dicarboxylic acid aromatic cores in H4pdpa imported into the synthetic process accounted for the conformational change of the ligand H4pdpa and the following structural variations. A systematic investigation was conducted to explore how different concentrations of structure-directing agents affected the frameworks of resultant metal-organic frameworks. Furthermore, 1-3 were shown to be available heterogeneous catalysts for the synthesis of 2-imidazoline and 1,4,5,6-tetrahydropyrimidine derivatives by the cascade cycloaddition reactions of aromatic nitriles with diamines. The results showed that the catalytic activity of 2 was much higher than that of 1 and 3, because of its unique structural features, including accessible catalytic sites and suitable channel size and shape. In addition, a plausible mechanism for these catalytic reactions was proposed, and the reactivity-structure relationship was further clarified.
In our continuing quest to develop a metal-organic framework (MOF)-catalyzed tandem pyrrole acylation-Nazarov cyclization reaction with α,β-unsaturated carboxylic acids for the synthesis of cyclopentenone[b]pyrroles, which are key intermediates in the synthesis of natural product (±)-roseophilin, a series of template-induced Zn-based (1-3) metal-organic frameworks (MOFs) have been solvothermally synthesized and characterized. Structural conversions from non-porous MOF 1 to porous MOF 2, and back to non-porous MOF 3 arising from the different concentrations of template guest have been observed. The anion-π interactions between the template guests and ligands could affect the configuration of ligands and further tailor the frameworks of 1-3. Futhermore, MOFs 1-3 have shown to be effective heterogeneous catalysts for the tandem acylation-Nazarov cyclization reaction. In particular, the unique structural features of 2, including accessible catalytic sites and suitable channel size and shape, endow 2 with all of the desired features for the MOF-catalyzed tandem acylation-Nazarov cyclization reaction, including heterogeneous catalyst, high catalytic activity, robustness, and excellent selectivity. A plausible mechanism for the catalytic reaction has been proposed and the structure-reactivity relationship has been further clarified. Making use of 2 as a heterogeneous catalyst for the reaction could greatly increase the yield of total synthesis of (±)-roseophilin.
Reaction of 1,3-diazidopropane with an electron-rich Mn(II) precursor results in oxidation of the metal center to a Mn complex with concomitant assembly of the macrocyclic ligand into the 1,2,3,4,8,9,10,11-octaazacyclotetradeca-2,9-diene-1,4,8,11-tetraido (OIM) ligand. Although describable as a Werner Mn(V) complex, analysis by X-ray diffraction, magnetic measurements, X-ray photoelectron spectroscopy, cyclic voltammetry, and density functional theory calculations suggest an electronic structure consisting of a Mn(III) metal center with a noninnocent OIM diradical ligand. The resulting complex, (OIM)Mn(NH t Bu), reacts via proton-coupled electron transfer (PCET) with phenols to form phenoxyl radicals, with dihydroanthracene to form anthracene, and with (2,4-ditert-butyltetrazolium-5-yl)amide to extrude a tetrazyl radical. PCET from the latter generates the isolable corresponding one-electron reduced compound with a neutral, zwitterionic axial 2,4-ditert-butyltetrazolium-5-yl)amido ligand. Electron paramagnetic resonance and density functional theoretical analyses suggest an electronic structure wherein the manganese atom remains Mn(III) and the OIM ligand has been reduced by one electron to a monoradical noninnocent ligand. The result indicates PCET processes whereby the proton is transferred to the axial ligand to extrude t BuNH2, the electron is transferred to the equatorial ligand, and the central metal remains relatively unperturbed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.