Energy harvesting enables novel devices and applications without batteries, but intermittent operation under energy harvesting poses new challenges to memory consistency that threaten to leave applications in failed states not reachable in continuous execution. This paper presents analytical models that aid in reasoning about intermittence. Using these, we develop DINO (Death Is Not an Option), a programming and execution model that simplifies programming for intermittent systems and ensures volatile and nonvolatile data consistency despite near-constant interruptions. DINO is the first system to address these consistency problems in the context of intermittent execution. We evaluate DINO on three energy-harvesting hardware platforms running different applications. The applications fail and exhibit error without DINO, but run correctly with DINO’s modest 1.8–2.7× run-time overhead. DINO also dramatically simplifies programming, reducing the set of possible failure- related control transfers by 5–9×.
Wireless communication has become an intrinsic part of modern implantable medical devices (IMDs). Recent work, however, has demonstrated that wireless connectivity can be exploited to compromise the confidentiality of IMDs' transmitted data or to send unauthorized commands to IMDs-even commands that cause the device to deliver an electric shock to the patient. The key challenge in addressing these attacks stems from the difficulty of modifying or replacing already-implanted IMDs. Thus, in this paper, we explore the feasibility of protecting an implantable device from such attacks without modifying the device itself. We present a physicallayer solution that delegates the security of an IMD to a personal base station called the shield. The shield uses a novel radio design that can act as a jammer-cum-receiver. This design allows it to jam the IMD's messages, preventing others from decoding them while being able to decode them itself. It also allows the shield to jam unauthorized commands-even those that try to alter the shield's own transmissions. We implement our design in a software radio and evaluate it with commercial IMDs. We find that it effectively provides confidentiality for private data and protects the IMD from unauthorized commands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.