Traditionally, interference is considered harmful. Wireless networks strive to avoid scheduling multiple transmissions at the same time in order to prevent interference. This paper adopts the opposite approach; it encourages strategically picked senders to interfere. Instead of forwarding packets, routers forward the interfering signals. The destination leverages network-level information to cancel the interference and recover the signal destined to it. The result is analog network coding because it mixes signals not bits. So, what if wireless routers forward signals instead of packets? Theoretically, such an approach doubles the capacity of the canonical 2-way relay network. Surprisingly, it is also practical. We implement our design using software radios and show that it achieves significantly higher throughput than both traditional wireless routing and prior work on wireless network coding.
This paper presents the design and implementation of 802.11n+ , a fully distributed random access protocol for MIMO networks. 802.11n+ allows nodes that differ in the number of antennas to contend not just for time, but also for the degrees of freedom provided by multiple antennas. We show that even when the medium is already occupied by some nodes, nodes with more antennas can transmit concurrently without harming the ongoing transmissions. Furthermore, such nodes can contend for the medium in a fully distributed way. Our testbed evaluation shows that even for a small network with three competing node pairs, the resulting system about doubles the average network throughput. It also maintains the random access nature of today's 802.11n networks.
Recent years have seen major innovations in cross-layer wireless designs. Despite demonstrating significant throughput gains, hardly any of these technologies have made it into real networks. Deploying cross-layer innovations requires adoption from Wi-Fi chip manufacturers. Yet, manufacturers hesitate to undertake major investments without a better understanding of how these designs interact with real networks and applications.This paper presents the first step towards breaking this stalemate, by enabling the adoption of cross-layer designs in today's networks with commodity Wi-Fi cards and actual applications. We present OpenRF, a cross-layer architecture for managing MIMO signal processing. OpenRF enables access points on the same channel to cancel their interference at each other's clients, while beamforming their signal to their own clients. OpenRF is self-configuring, so that network administrators need not understand MIMO or physical layer techniques.We patch the iwlwifi driver to support OpenRF on off-the-shelf Intel cards. We deploy OpenRF on a 20-node network, showing how it manages the complex interaction of cross-layer design with a real network stack, TCP, bursty traffic, and real applications. Our results demonstrate an average gain of 1.6× for TCP traffic and a significant reduction in response time for real-time applications, like remote desktop.
Wireless communication has become an intrinsic part of modern implantable medical devices (IMDs). Recent work, however, has demonstrated that wireless connectivity can be exploited to compromise the confidentiality of IMDs' transmitted data or to send unauthorized commands to IMDs-even commands that cause the device to deliver an electric shock to the patient. The key challenge in addressing these attacks stems from the difficulty of modifying or replacing already-implanted IMDs. Thus, in this paper, we explore the feasibility of protecting an implantable device from such attacks without modifying the device itself. We present a physicallayer solution that delegates the security of an IMD to a personal base station called the shield. The shield uses a novel radio design that can act as a jammer-cum-receiver. This design allows it to jam the IMD's messages, preventing others from decoding them while being able to decode them itself. It also allows the shield to jam unauthorized commands-even those that try to alter the shield's own transmissions. We implement our design in a software radio and evaluate it with commercial IMDs. We find that it effectively provides confidentiality for private data and protects the IMD from unauthorized commands.
This demo presents WiSee, a novel human-computer interaction system that leverages wireless networks (e.g., Wi-Fi), to enable sensing and recognition of human gestures and motion. Since wire- less signals do not require line-of-sight and can traverse through walls, WiSee enables novel human-computer interfaces for remote device control and building automation. Further, it achieves this goal without requiring instrumentation of the human body with sensing devices. We integrate WiSee with applications and demonstrate how WiSee enables users to use gestures and control applications including music players and gaming systems. Specifically, our demo will allow SIGCOMM attendees to control a music player and a lighting control device using gestures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.