Molecularly Imprinted Polymers (MIPs) are synthesized for the selective detection of caffeine. The polymerization process, monomer and crosslinker monomer composition are varied to determine the optimal synthesis procedure via batch rebinding experiments evaluated with optical detection. The selectivity is tested by comparing the response of caffeine to compounds with similar chemical structures (theophylline and theobromine) and dopamine, another neurotransmitter. Subsequently, the MIP polymer particles are integrated into bulk modified MIP screen-printed electrodes (MIP-modified SPEs). The sensors are used to measure caffeine content in various samples employing the Heat-Transfer Method (HTM), a low-cost and simple thermal detection method that is based on differences in thermal resistance at the solid-liquid interface. At first, the noise is minimized by adjusting the settings of temperature feedback loop. Second, the response of the MIP-modified SPE is studied at various temperatures ranging from 37 to 50 and 85 °C. The binding to MIP-modified SPEs has never been studied at elevated temperatures since most biomolecules are not stable at those temperatures.Using caffeine as proof-of-concept, it is demonstrated that at 85 °C the detection limit is significantly enhanced due to higher signal to noise ratios and enhanced diffusion of the biomolecule. Thermal wave transport analysis (TWTA) is also optimized at 85 °C producing a limit of detection of ~1 nM. Next, MIP-modified SPEs are used to measure the caffeine concentration in complex samples including caffeinated beverages, spiked tap water and waste water samples.The use of MIP-modified SPEs combined with thermal detection provides sensors that can be used for fast and low-cost detection performed on-site, which holds great potential for the determination of contaminants in environmental samples. The platform is generic and by adapting the MIP layer, we can expand to this a range of relevant targets.
In micellar solutions, one-electron reduction of *O2(-) radical-anions by 3-alkylpolyhydroxyflavones (FnH) with alkyl chains of n = 1, 4, 6, 10 carbons produces phenoxyl radicals ( (*Fn) identical to those obtained by one-electron oxidation by *Br2(-) radical-anions or by repair of tryptophan radicals. In cetyltrimethylammonium bromide (CTAB), F1H localizes in the Stern layer, and alkyl chains of other FnH solubilize in the hydrophobic interior, interacting with cetyl tails. This interaction produces more compact micelles with lower intramicellar fluidity, as suggested by the increase in the pseudo-first-order rate constant of *Fn formation ( k 1) from approximately 390 s (-1) for n = 1 to 610 s (-1) for n = 10, leading to an intramicellar bimolecular rate constant of 1 x 10 (5) M (-1) s (-1). Additionally, *F1 and *F4 decay by intermicellar bimolecular reaction (2 k = 20 and 2 x 10 (5) M (-1) s (-1), respectively) whereas other *Fn radicals are stable over seconds due to increased localization with regards to the Stern layer. In contrast, the thick uncharged hydrophilic palisade layer and the compact hydrophobic core of Triton X100 micelles are responsible for a much higher microviscosity resulting in a decrease in k 1 from approximately 15.6 s (-1) for n = 1 to 9.6 s (-1) for n = 10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.