Surface dipoles are a powerful tool in interfacial modification for improving device output via energy level matching. Fluorinated alkanethiols show a strong promise for these applications as they can generate large and tunable dipoles based on fluorine location and chain length. Furthermore, these chains can be designed to possess fluorocarbons solely along the backbone, enabling an "embedded" configuration that generates a significant dipole effect from the fluorines while maintaining surface chemistry to prevent deleterious side effects from altered surface interactions. However, fluorine substitution can modify other molecular electronic properties, and it is important to consider the transport properties of these interfacial modifiers so that knowledge can be used to tailor the optimal device performance. In this paper, we report the transport properties of selfassembled monolayers derived from a series of fluorinated alkanethiols, both with and without the embedded dipole structure. Photoelectron spectroscopy and Kelvin probe force microscopy show significant work function modification from all fluorinecontaining molecules compared to purely hydrocarbon thiols. However, although embedded fluorocarbons generate a smaller electrostatic effect than terminal fluorocarbons, they yield higher tunneling currents across Au/monolayer/eutectic gallium− indium junctions compared to both terminal fluorocarbon and purely hydrocarbon alkanethiols. Computational studies show that the location of the fluorine constituents modifies not only dipoles and energy levels but also molecular orbitals, enabling the presence of delocalized lowest unoccupied molecular orbital levels within the alkanethiol backbone and, thereby, the appearance of larger tunneling currents compared to other alkanethiols. Ultimately, we show that fluorinated alkanethiols and the embedded dipole architecture are both powerful tools, but they must be thoroughly analyzed for proper utilization in a device setting.
An efficient synthesis of 2-acylchromeno[3,4-c]pyrrol-4(2H)-one derivatives by a three-component reaction of salicylaldehydes, β-keto esters, and p-toluenesulfonylmethyl isocyanide is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.