Despite their proven ability to output DC currents of >100 A, the physical mechanism which underpins the operation of a high-T c superconducting (HTS) dynamo is still widely debated. Here, we show that the experimentally observed open-circuit DC output voltage, V dc , is due to the action of overcritical eddy currents within the stator wire. We demonstrate close agreement between experimental results and numerical calculations, and show that large over-critical currents flow within the high-T c stator during certain parts of the dynamo cycle. These overcritical currents experience a non-linear local resistivity which alters the output voltage waveform obtained in the superconducting state. As a result, the full-cycle integral of this altered waveform outputs a non-zero time-averaged dc voltage. We further show that the only necessary requirement for a non-zero V dc output from any dynamo, is that the stator must possess a non-linear local resistivity. Here, this is provided by the flux-flow regime of a HTS coated conductor wire, where conduction is described by the E − J power law. We also show that increased values of V dc can be obtained by employing stator wires which exhibit a strong in-field dependence of the critical current J c (B, θ). However, non-linear resistivity is the key requirement to realize a DC output, as linear magneto-resistance is not sufficient. Our results clarify this longstanding conundrum, and have direct implications for the optimization of future HTS dynamo devices.
The high-T c superconducting (HTS) dynamo is a promising device that can inject large DC supercurrents into a closed superconducting circuit. This is particularly attractive to energise HTS coils in NMR/MRI magnets and superconducting rotating machines without the need for connection to a power supply via current leads. It is only very recently that quantitatively accurate, predictive models have been developed which are capable of analysing HTS dynamos and explain their underlying physical mechanism. In this work, we propose to use the HTS dynamo as a new benchmark problem for the HTS modelling community. The benchmark geometry consists of a permanent magnet rotating past a stationary HTS coated-conductor wire in the open-circuit configuration, assuming for simplicity the 2D (infinitely long) case. Despite this geometric simplicity the solution is complex, comprising time-varying spatially-inhomogeneous currents and fields throughout the superconducting volume. In this work, this benchmark problem has been implemented using several different methods, including H-formulation-based methods, coupled H-A and T-A formulations, the Minimum Electromagnetic Entropy Production method, and integral equation and volume integral equation-based equivalent circuit methods. Each of these approaches show excellent qualitative and quantitative agreement for the open-circuit equivalent instantaneous voltage and the cumulative time-averaged equivalent voltage, as well as the current density and electric field distributions within the HTS wire at key positions during the magnet transit. Finally, a critical analysis and comparison of each of the modelling frameworks is presented, based on the following key metrics: number of mesh elements in the HTS wire, total number of mesh elements in the model, number of degrees of freedom, tolerance settings and the approximate time taken per cycle for each model. This benchmark and the results contained herein provide researchers with a suitable framework to validate, compare and optimise their own methods for modelling the HTS dynamo.
High-T c superconducting (HTS) dynamos are experimentally proven devices that can produce large (more than a kiloamp) dc currents in superconducting circuits, without the thermal leak associated with copper current leads. However, these dc currents are theoretically controversial, as it is not immediately apparent why a device that is topologically identical to an ac alternator should give a dc output at all. Here, we present a finite-element model and a comparison of it with experiment that fully explain this effect. It is shown that the dc output arises naturally from Maxwell's laws when time-varying overcritical eddy currents are induced to circulate in a HTS sheet. We first show that our finite-element model replicates all of the experimental electrical behavior reported so far for these devices, including the dc output characteristics and transient electrical waveforms. Direct experimental evidence for the presence of circulating eddy currents is also obtained through measurements of the transient magnetic field profile across the HTS tape, using a linear Hall array. These results are also found to agree closely with predictions from the finite-element model. Following this experimental validation, calculated sheet current densities and the associated local electric fields are examined for a range of frequencies and net transport currents. We find that the electrical output from a HTS dynamo is governed by the competition between transport and eddy currents induced as the magnet transits across the HTS tape. The eddy currents are significantly higher (approximately 1.5 times) than the local critical current density, and hence experience a highly nonlinear local resistivity. This nonlinearity breaks the symmetry observed in a normal ohmic material, which usually requires the net transport current to vary linearly with the average electric field. The interplay between local current densities and nonlinear resistivities (which both vary in time and space) is shown to systematically give rise to the key observed parameters of experimental HTS dynamo devices: the open-circuit voltage, the internal resistance, and the short-circuit current. Finally, we identify that the spatial boundaries formed by each edge of the HTS stator tape play a vital role in determining the total dc output. This offers the potential to develop alternative designs for HTS dynamo devices, in which the internal resistance is greatly reduced and the short-circuit current is substantially increased.
Several research groups have reported on the observation of superconductivity in bilayer graphene structures where single atomic layers of graphene are stacked and then twisted at angles forming Moiré superlattices. The characterization of the superconducting state in these 2D materials is an ongoing task. Here we investigate the pairing symmetry of bilayer graphene Moiré superlattices twisted at = 1.05°, 1.10° and 1.16° for carrier doping states varied in the range of = 0.5 − 1.5 • 10 12 −2 (where superconductivity can be realized) by analyzing the temperature dependence of the upper critical field Bc2(T) and the self-field critical current Jc(sf,T) within currently available models for single-and two-band s-, d-, pand d+id-wave gap symmetries. Extracted superconducting parameters show that only s-wave and a specific kind of p-wave symmetries are likely to be dominant in bilayer graphene Moiré superlattices. More experimental data is required to distinguish between the s-and remaining p-wave symmetries as well as the suspected two-band superconductivity in these 2D superlattices.
High-Tc superconducting (HTS) dynamos are simple devices for injecting and sustaining dc currents in superconducting coils/magnets. The simple geometry of these devices consists of a superconducting stator(s) and one or more rotor magnets arranged in identical fashion to a classical alternator. However, unlike the classical alternator, the HTS dynamo gives a selfrectified dc output. This somewhat anomalous result is caused by the non-linear resistivity of HTS materials and the large over-critical eddy currents that flow in the stator. As these overcritical currents must recirculate in the HTS stator, the stator's width becomes a key parameter in the physics of the device. In this work we explore the effect of increasing the stator width through using recent advances in modeling these systems. We find that given enough space in the stator, the total sum of circulating and transport currents do not drive the full width of the stator into the flux-flow regime. Operation of the device in this regime results in a non-linear I-V curve, a marked decrease in the internal resistance at open circuit Roc, a saturation of the open circuit voltage Voc, and a short-circuit current Isc that approaches the in-field critical current of the stator itself Ic,min. These behaviors lead to the conclusion that optimal HTS dynamo design should ensure that the stator width be sufficient to avoid current saturation of the superconductor at the target operating current .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.