Simulation of the electromagnetic response of the human body relies heavily upon efficient computational models or phantoms. The first objective of this paper is to present an improved platform-independent full-body electromagnetic computational model (computational phantom), the Visible Human Project® (VHP)-Female v. 3.1 and to describe its distinct features and enhancements compared to VHP-Female v. 2.0. The second objective is to report phantom simulation for electric stimulation studies using the commercial FEM electromagnetic solver ANSYS MAXWELL.
Recent studies confirm the efficacy of transcranial magnetic stimulation (TMS) as a noninvasive treatment of medication-resistant depression [1, 2]. Four different devices, the Neuronetics Neurostar Stimulator, Brainsway H-Coil system, Magstim Magnetic Stimulator, and MagVenture Stimulator, have been cleared by the U.S. Food and Drug Administration (FDA) for the treatment of medication-resistant depression [3, 4]. Even though TMS coil holders, and even robots, have been developed that might make the application of TMS more spatially precise and efficient, to date, TMS is often applied by an operator who manually positions and retains the TMS coil over the subject's head. A potential safety concern is thus generated when the operator is a woman and is pregnant. There are no studies to date that assess the safety of TMS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.