Simulation of the electromagnetic response of the human body relies heavily upon efficient computational models or phantoms. The first objective of this paper is to present a new platform-independent full-body electromagnetic computational model (computational phantom), the Visible Human Project(®) (VHP)-Female v. 2.0 and to describe its distinct features. The second objective is to report phantom simulation performance metrics using the commercial FEM electromagnetic solver ANSYS HFSS.
Simulation of the electromagnetic response of the human body relies heavily upon efficient computational models or phantoms. The first objective of this paper is to present an improved platform-independent full-body electromagnetic computational model (computational phantom), the Visible Human Project® (VHP)-Female v. 3.1 and to describe its distinct features and enhancements compared to VHP-Female v. 2.0. The second objective is to report phantom simulation for electric stimulation studies using the commercial FEM electromagnetic solver ANSYS MAXWELL.
In this paper, we present a review of some electromagnetic interactions in bone matter. Special attention is paid to pulsed electromagnetic therapy, which is potentially a promising therapeutic method for bone healing. We review and compare existing setups and their applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.