Region duplication forgery detection is a special type of forgery detection approach and widely used research topic under digital image forensics. In copy move forgery, a specific area is copied and then pasted into any other region of the image. Due to the availability of sophisticated image processing tools, it becomes very hard to detect forgery with naked eyes. From the forged region of an image no visual clues are often detected. For making the tampering more robust, various transformations like scaling, rotation, illumination changes, JPEG compression, noise addition, gamma correction, and blurring are applied. So there is a need for a method which performs efficiently in the presence of all such attacks. This paper presents a detection method based on speeded up robust features (SURF) and hierarchical agglomerative clustering (HAC). SURF detects the keypoints and their corresponding features. From these sets of keypoints, grouping is performed on the matched keypoints by HAC that shows copied and pasted regions.
Abstract:In this paper we present the Dual Support Apriori for Temporal data (DSAT) algorithm. This is a novel technique for discovering Jumping Emerging Patterns (JEPs) from time series data using a sliding window technique. Our approach is particularly effective when performing trend analysis in order to explore the itemset variations over time. Our proposed framework is different from the previous work on JEP in that we do not rely on itemsets borders with a constrained search space. DSAT exploits previously mined time stamped data by using a sliding window concept, thus requiring less memory, minimum computational cost and very low dataset accesses. DSAT discovers all JEPs, as in "naïve" approaches, but utilises less memory and scales linearly with large datasets sets as demonstrated in the experimental section.
Abstract:In this paper we present the Dual Support Apriori for Temporal data (DSAT) algorithm. This is a novel technique for discovering Jumping Emerging Patterns (JEPs) from time series data using a sliding window technique. Our approach is particularly effective when performing trend analysis in order to explore the itemset variations over time. Our proposed framework is different from the previous work on JEP in that we do not rely on itemsets borders with a constrained search space. DSAT exploits previously mined time stamped data by using a sliding window concept, thus requiring less memory, minimum computational cost and very low dataset accesses. DSAT discovers all JEPs, as in "naïve" approaches, but utilises less memory and scales linearly with large datasets sets as demonstrated in the experimental section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.