[1] Slip rates across active faults and folds show that late Quaternary faulting is distributed across the central Tien Shan, not concentrated at its margins. Nearly every intermontane basin contains Neogene and Quaternary syntectonic strata deformed by Holocene north-south shortening on thrust or reverse faults. In a region that spans two thirds of the north-south width of the central Tien Shan, slip rates on eight faults in five basins range from $0.1 to $3 mm/yr. Fault slip rates are derived from faulted and folded river terraces and from trenches. Radiocarbon, optically stimulated luminescence, and thermoluminescence ages limit ages of terraces and aid in their regional correlation. Monte Carlo simulations that sample from normally distributed and discrete probability distributions for each variable in the slip rate calculations generate most likely slip rate values and 95% confidence limits. Faults in basins appear to merge at relatively shallow depths with crustal-scale ramps that underlie mountain ranges composed of pre-Cenozoic rocks. The sum and overall pattern of late Quaternary rates of shortening are similar to current rates of north-south shortening measured using Global Positioning System geodesy. This similarity suggests that deformation is concentrated along major fault zones near range-basin margins. Such faults, separated by rigid blocks, accommodate most of the shortening in the upper crust.
The 2014 Working Group on California Earthquake Probabilities (WGCEP14) present the time-independent component of the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), which provides authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes in California. The primary achievements have been to relax fault segmentation and include multifault ruptures, both limitations of UCERF2. The rates of all earthquakes are solved for simultaneously and from a broader range of data, using a system-level inversion that is both conceptually simple and extensible. The inverse problem is large and underdetermined, so a range of models is sampled using an efficient simulated annealing algorithm. The approach is more derivative than prescriptive (e.g., magnitude-frequency distributions are no longer assumed), so new analysis tools were developed for exploring solutions. Epistemic uncertainties were also accounted for using 1440 alternative logic-tree branches, necessitating access to supercomputers. The most influential uncertainties include alternative deformation models (fault slip rates), a new smoothed seismicity algorithm, alternative values for the total rate of M w ≥ 5 events, and different scaling relationships, virtually all of which are new. As a notable first, three deformation models are based on kinematically consistent inversions of geodetic and geologic data, also providing slip-rate constraints on faults previously excluded due to lack of geologic data. The grand inversion constitutes a system-level framework for testing hypotheses and balancing the influence of different experts. For example, we demonstrate serious challenges with the Gutenberg-Richter hypothesis for individual faults. UCERF3 is still an approximation of the system, however, and the range of models is limited (e.g., constrained to stay close to UCERF2). Nevertheless, UCERF3 removes the apparent UCERF2 overprediction of M 6.5-7 earthquake rates and also includes types of multifault ruptures seen in nature. Although UCERF3 fits the data better than UCERF2 overall, there may be areas that warrant further site-specific investigation. Supporting products may be of general interest, and we list key assumptions and avenues for future model improvements. Manuscript OrganizationBecause of manuscript length and model complexity, we begin with an outline of this report to help readers navigate the various sections:
The concept of the earthquake cycle is so well established that one often hears statements in the popular media like, "the Big One is overdue" and "the longer it waits, the bigger it will be." Surprisingly, data to critically test the variability in recurrence intervals, rupture displacements, and relationships between the two are almost nonexistent. To generate a long series of earthquake intervals and offsets, we have conducted paleoseismic investigations across the San Andreas fault near the town of Wrightwood, California, excavating 45 trenches over 18 years, and can now provide some answers to basic questions about recurrence behavior of large earthquakes.To date, we have characterized at least 30 prehistoric earthquakes in a 6000-yr-long record, complete for the past 1500 yr and for the interval 3000-1500 B.C. For the past 1500 yr, the mean recurrence interval is 105 yr (31-165 yr for individual intervals) and the mean slip is 3.2 m (0.7-7 m per event). The series is slightly more ordered than random and has a notable cluster of events, during which strain was released at 3 times the long-term average rate. Slip associated with an earthquake is not well predicted by the interval preceding it, and only the largest two earthquakes appear to affect the time interval to the next earthquake. Generally, short intervals tend to coincide with large displacements and long intervals with small displacements. The most significant correlation we find is that earthquakes are more frequent following periods of net strain accumulation spanning multiple seismic cycles.The extent of paleoearthquake ruptures may be inferred by correlating event ages between different sites along the San Andreas fault. Wrightwood and other nearby sites experience rupture that could be attributed to overlap of relatively independent segments that each behave in a more regular manner. However, the data are equally consistent with a model in which the irregular behavior seen at Wrightwood typifies the entire southern San Andreas fault; more long event series will be required to definitively outline prehistoric rupture extents.
[1] We quantify the spatial pattern of uplift rate in western Oregon and northernmost California using tidal and leveling records to better understand the pattern of interseismic locking on the Cascadia subduction zone. We extend relative sea level time series of the six primary NOAA tide gauges to include all observations from 1925 to 2006. Previously unidentified bench mark instability biases portions of tidal records by 1.6 mm a À1 before correction. We determine precise relative uplift rates at the six tidal sites with an adjustment that includes rates of differenced time series as additional constraints. Our analysis of National Geodetic Survey leveling data between tide gauges corrects errors in 1941 leveling, and 184 secondary ties double the number of highest quality uplift rate estimates. Relative uplift rates from leveling are adjusted to the tidal rates, accounting for uncertainties in both data types. Tidal and leveling uplift rates agree within error for all but one of the coastal segments, where we infer systematic leveling error affects the 1988 line. Uplift rates are made absolute using an interval and location-specific geocentric sea level rise rate of 2.3 ± 0.2 mm a À1 . Total propagated one sigma errors for the absolute uplift rates of bench marks are $0.4 mm a À1 . Along-strike changes in uplift rate near 45°N and 42.8°N require two distinct changes in locking depth, as inferred from elastic dislocation modeling. The along-strike changes in locking on this portion of the Cascadia subduction zone interface correlate to the western and southern extent of the mafic Siletzia block in the fore arc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.