1. Rat liver slices were employed to study the relative rates of incorporation of a mixture of [2-(3)H]- or [1,3-(3)H]-glycerol and [1-(14)C]glycerol into lipids. 2. With 0.1mm-glycerol approx. 82% of the newly synthesized lipid, calculated from (14)C incorporation, was present as neutral lipid, 13% as phosphatidylcholine and 5% as phosphatidylethanolamine. Increasing the glycerol concentration to 40mm caused a decrease in the percentage of neutral lipid to 59% and a corresponding increase in the percentage of phosphatidylcholine to 36% of the newly synthesized lipid. 3. The (d.p.m. of 2-(3)H)/(d.p.m. of 1-(14)C) ratio in glycerolipid was considerably higher than that in precursor glycerol throughout the range of experimental conditions. In contrast the incorporation of a mixture of [1,3-(3)H]glycerol and [1-(14)C]glycerol into lipid occurred with little or no change in the (3)H/(14)C ratio. 4. Respiring rat liver mitochondria were found to oxidize a mixture of sn-[2-(3)H]- and sn-[1-(14)C]-glycerol 3-phosphate with a resultant increase in the (3)H/(14)C ratio of the remaining sn-glycerol 3-phosphate. This increase is due to a (3)H isotope effect of the mitochondrial sn-glycerol 3-phosphate dehydrogenase (EC 1.1.99.5), which discriminates against sn-[2-(3)H]glycerol 3-phosphate during oxidation. 5. A method is described for the simultaneous determination of the relative contributions of the glycerol phosphate and dihydroxyacetone phosphate pathways of glycerolipid biosynthesis in rat liver slices. The method involves measurement of the (d.p.m. of 2-(3)H)/(d.p.m. of 1-(14)C) ratio in both sn-glycerol 3-phosphate and glycerolipid after incubation of rat liver slices with a mixture of [2-(3)H]glycerol and [1-(14)C]glycerol for various times. 6. By using this method it was shown that 40-50% of the glycerol incorporated into lipid by rat liver slices proceeded via the sn-glycerol 3-phosphate pathway and 50-60% was incorporated via dihydroxyacetone phosphate.
1. Acetyl-Coa carboxylase from lactating-rabbit mammary gland was purified to homogeneity by the criterion of polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. 2. Use of phosphate buffer throughout the purification gave low recovery of enzyme. Consequently, Tris buffers were used in the extraction and in selected stages of the purification procedure. 3. The purified enzyme had a specific activity of 5.15 +/- 0.3 μmol of bicarbonate incorporated/min per mg of protein (mean +/- S.E.M. of five preparations). This represents a purification of 257 +/- 16-fold and a yield of 4.3 +/- 0.13%. 4. The kinetic parameters of the purified enzyme were similar to those reported for the enzyme from other tissue sources. 5. The enzyme was assayed by a spectrophotometric assay and by a [14C]bicarbonate-fixation assay. Short incubation were used in the radio-chemical assay to avoid substantial loss of [14C]bicarbonate.
Antisera were raised to acetyl-CoA carboxylase and 6-phosphogluconate dehydrogenase from mammary glands of lactating rabbits, and cytochrome oxidase from rat liver. The enzymes were all highly purified but gave rise to multispecific antisera when tested against tissue extracts. Absorption procedures were devised to free the antisera of contaminating antibodies. Antisera to acetyl-CoA carboxylase and cytochrome oxidase were absorbed with fractions discarded during enzyme purification. The antiserum to 6-phospho-gluconate dehydrogenase was absorbed with a tissue extract from an early stage in mammary-gland differentiation. Monospecific antisera are essential for enzyme turnover studies and therefore antisera should be extensively tested and absorbed before use. A general procedure for the absorption of antisera to purified enzymes has been devised on the basis of accepted principles of antisera absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.