We present an in-depth electrical characterization of contact resistance in carbon nanostructure via interconnects. Test structures designed and fabricated for via applications contain vertically aligned arrays of carbon nanofibers (CNFs) grown on a thin titanium film on silicon substrate and embedded in silicon dioxide. Current-voltage measurements are performed on single CNFs using atomic force microscope current-sensing technique. By analyzing the dependence of measured resistance on CNF diameter, we extract the CNF resistivity and the metal-CNF contact resistance.
The growth behaviors and contact resistances of vertically aligned carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown on different underlayer metals are investigated. The average diameter, diameter distribution, density, growth rate and contact resistance exhibit strong correlation with the choice of catalyst/underlayer combination. These observations are analyzed in terms of interactions between the catalyst and the underlayer metal. The CNT via test structure has been designed and fabricated to make current-voltage measurements on single CNTs using a nanomanipulator under scanning electron microscopy (SEM) imaging. By analyzing the dependence of measured resistance on CNT diameter, the CNT-metal contact resistance can be extracted. The contact resistances between as-grown CNTs and different underlayer metals are determined. Relationships between contact resistances and various combinations of catalysts and underlayer metals are investigated.
A method to extract the contact resistance and bulk resistivity of vertically grown carbon nanofibers (CNFs) or similar one-dimensional nanostructures is described. Using a silicon-compatible process to fabricate a terrace test structure needed for the CNF length variation, the contact resistance is extracted by measuring in situ the resistances of individual CNFs with different lengths and within a small range of diameters using a nanoprober inside a scanning electron microscope. Accurate determination of contact resistances for various combinations of catalysts and underlayer metals can lead to eventual optimization of materials’ growth and device fabrication processes for CNF via interconnects.
We study the dynamic long range interaction induced topological photonic bands and edge modes in a onedimensional (1D) array of strongly dispersive gyromagnetic resonant cylinders. We propose a 1D topological model for such a dispersive gyromagnetic system and demonstrate that the dynamic long-range interaction can lead to localized topological edge modes, while the quasistatic interaction alone does not. Different from the conventional Su-Schrieffer-Heeger model that has only nearest-neighbor interactions, we find that the normal modes of the system coupled strongly to the photon mode of the background medium and the dynamic effects create a different band gap. Our results indicate the importance of the dynamic long-range interactions on the band structures and topological edge modes in strongly dispersive gyromagnetic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.