BackgroundAvian pathogenic Escherichia coli (APEC) are causative agent of extraintestinal infections, collectively known as colibacillosis, which results significant losses in poultry industries. The extraintestinal survival of E. coli is facilitated by numerous virulence factors which are coded by virulence genes. This study was conducted to find out the pattern of antibiotic resistance and virulence genes content in the APEC strains isolated from broiler chickens at National Avian Disease Investigation Laboratory and Veterinary Teaching Hospital, Rampur, Chitwan, Nepal.ResultsA total of 50 E. coli strains were isolated from 50 colibacillosis suspected broiler chickens. Out of 50 isolates of E. coli, 47 (94%) showed resistant to three or more antimicrobials. The highest levels (22%) of multidrug-resistant E. coli were observed for five different types of antimicrobials. Antibiogram profiles of 50 E. coli strains showed the maximum resistance to ampicillin (98%), followed by co-trimoxazole (90%), and doxycycline (62%). The highest intermediate resistance was shown by colistin (50%) and the highest sensitivity was against amikacin (84%), followed by nitrofurantoin (55%). Based on the genetic criteria, 45 (90%) E. coli isolates were considered as pathogenic (APEC) which contained more than five virulence genes. Out of total APEC genes detected, we found the combination of iss, iucD, hlyF, ompT, iroN, and iutA genes were mostly associated with the APEC and additionally, to some lesser extent irp2, papC, Cva/cvi, and tsh genes showed the critical role for virulent traits of APEC strains.ConclusionIn this study, high prevalent of antimicrobial resistant pattern was found with avian pathogenic E. coli strains isolated from broiler chickens. To our knowledge, this is the first molecular analysis which confirmed the prevalence of APEC strains in poultry sector in Nepal. These finding suggest the need of surveillance and intervention system to control misuse of antibiotics and APEC outbreak in the poultry farm.Electronic supplementary materialThe online version of this article (10.1186/s12917-018-1442-z) contains supplementary material, which is available to authorized users.
Background The threat of methicillin-resistant Staphylococcus aureus (MRSA) exists globally and has been listed as a priority pathogen by the World Health Organization. One of the sources of MRSA emergence is livestock and its products, often raised in poor husbandry conditions. There are limited studies in Nepal to understand the prevalence of MRSA in dairy animals and its antimicrobial resistance (AMR) profile. A cross-sectional study was conducted in Chitwan, one of the major milk-producing districts of Nepal, from February 2018 to September 2019 to estimate the prevalence of MRSA in milk samples and its AMR profile. The collected milk samples (n = 460) were screened using the California Mastitis Test (CMT) and positive samples were subjected to microbiological analysis to isolate and identify S. aureus. Polymerase Chain Reaction (PCR) was used to identify the presence of the mecA gene and screen for MRSA. Results In total, 41.5% (191/460) of milk samples were positive in the CMT test. Out of 191 CMT positive milk samples, the biochemical tests showed that the prevalence of S. aureus was 15.2% (29/191). Among the 29 S. aureus isolates, 6.9% (2/29) were identified as MRSA based on the detection of a mecA gene. This indicates that that 1.05% (2/191) of mastitis milk samples had MRSA. The antibiotic sensitivity test showed that 75.9% (22/29) and 48.3% (14/29) S. aureus isolates were found to be sensitive to Cefazolin and Tetracycline respectively (48.3%), whereas 100% of the isolates were resistant to Ampicillin. In total 96.6% (28/29) of S. aureus isolates were multidrug-resistant (MDR). Conclusions This study revealed a high prevalence of S. aureus-mediated subclinical mastitis in dairy herds in Chitwan, Nepal, with a small proportion of it being MRSA carrying a mecA gene. This S. aureus, CoNS, and MRSA contaminated milk poses a public health risk due to the presence of a phenotype that is resistant to very commonly used antibiotics. It is suggested that dairy herds be screened for subclinical mastitis and treatments for the animals be based on antibiotic susceptibility tests to reduce the prevalence of AMR. Furthermore, future studies should focus on the Staphylococcus spp. to explore the antibiotic resistance genes in addition to the mecA gene to ensure public health.
BackgroundCampylobacter is the primary cause of food borne gastroenteritis. Moreover, the emergence of multiple drug resistant campylobacters from poultry and pork has produced a potential threat to public health. Research addressing these issues is sparse in Nepal. So, this cross-sectional study aims at determining the prevalence, antibiogram and risk factors of campylobacters from dressed porcine carcass of Chitwan, Nepal.ResultsWe collected 139 samples of dressed porcine carcass from 10 different pork shops located in Chitwan district and processed according to OIE Terrestrial Manual, 2008, chapter 2.8.10. Antibiogram of identified Campylobacter spp. was evaluated against nine commonly used antibiotics by using disc diffusion method following CLSI guidelines. The prevalence of Campylobacter spp. was 38.84% (C. coli 76% and C. jejuni 24%). There was no significant difference (p > 0.05) between the prevalence rate of male (32.4%) and female (41%) carcass. Ampicillin and erythromycin showed the highest resistance (92.59% each) followed by colistin (72.2%), tetracycline (61.1%), nalidixic acid and cotrimoxazole (44.4% each), ciprofloxacin (31.5%) and gentamicin (5.56%). Moreover, 77.8% of the isolates were resistant to more than two antimicrobials. Nalidixic acid and tetracycline showed significant difference (p < 0.05) in the resistivity pattern among different species of Campylobacters. The association between prevalence rate and regular sanitization of slaughter slab equipments was significant (p < 0.05). Similarly, prevalence rate was significantly associated (p < 0.01) with chilling and contamination of intestinal content with carcass.ConclusionsThe pork meat of Chitwan is highly contaminated with antibiotic-resistant Campylobacters and slaughtering practices play significant role in contamination. It is necessary to train the butchers about hygienic slaughtering practice. The consumers as well as butchers should adopt safety measures to prevent themselves from antibiotic resistant campylobacters. The veterinary practitioners should adopt prudent use of antibiotics in pigs.
Background Nepal’s poultry industry has increased with a growing middle class, which has translated to an increase in antimicrobial consumption and thus a rise in antimicrobial resistance (AMR). Describing and understanding antimicrobial use practices among commercial poultry producers in Nepal may help minimize the risks of AMR development in both humans and animals and determine the effectiveness of relevant policies. Methods From July to August 2018, poultry farmers were randomly recruited from Nepal’s Chitwan District to participate in a cross-sectional study. The lead producer in each poultry operation was administered a quantitative structured-survey via a 30-min interview. Participants were asked to provide demographics, production practices, and knowledge about their antimicrobial use practices. Descriptive data analysis was performed to obtain frequencies and compare practices. Results In total, 150 commercial poultry producers of whom raised between 300 and 40,000 birds completed the interviews. Only 33% (n = 49) of producers reported knowing what AMR was, and among them only 50% (n = 25) consulted a veterinarian for treatment options. Antimicrobial administration for growth promotion was still employed by 13% of poultry producers. Similarly, critically important antimicrobial drugs, specifically colistin, were identified at 35% of participating operations. Producers reported low overall understanding and compliance of withdrawal periods (n = 41; 27%), which may result in both AMR development and adverse health reactions among consumers who ingest antimicrobial residues. Although Nepal has publicized antimicrobial use policies and awareness campaigns to instill healthy production practices, most producers (82%) were unaware of them. Conclusion Many Nepalese poultry producers lack overall antimicrobial use and AMR awareness, which is evidenced by low antimicrobial withdrawal period compliance, use of antimicrobials for growth promotion, and the sustained use of critically important antimicrobials. Improved outreach and educational capacities, paired with increased veterinary resources and extensive monitoring in operations and retail meat products, may increase AMR awareness and policy enforcement.
This study aimed to identify, evaluate the antibiotic resistance pattern and detect virulence genes iss, and ompT in avian pathogenic Escherichia coli (APEC) from broiler chickens in central Nepal. To determine the antibiotic resistance pattern of the obtained isolates, the Kirby-Bauer disc diffusion method was used with six different commercial antibiotic discs: Amikacin, Gentamycin, Ciprofloxacin, Doxycycline, Chloramphenicol and Levofloxacin. A polymerase chain reaction (PCR) assay was used for the selected isolates (n=40) to screen the presence of the iss and ompT genes after the extraction of DNA using the boiling method Out of 60 suspected Colibacillosis liver samples, 40 were confirmed as E. coli positive The antibiogram profile revealed maximum resistance to Doxycycline (87.5%), followed by Levofloxacin (72.5%), Ciprofloxacin (67.5%), Chloramphenicol (40.0%), Gentamycin (32.5%) and Amikacin (10.0%).. The presence of the iss and ompT genes was found to be 100.0% and 90.0%, respectively. APEC was found to be highly resistant to most of the antibiotics. Virulence-associated genes iss and ompT were obtained at high percentages from Colibacillosis suspected broiler chickens in Chitwan, Nepal. These finding suggests that the judicial use of antimicrobials is compulsory to check antibiotic resistance and Colibacillosis outbreaks in poultry farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.