Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera(1) and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium(2), and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness
Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.
In the budding yeast, Saccharomyces cerevisiae, four separate but structurally related mitogen-activated protein kinase (MAPK) activation pathways are known. The best understood of these regulates mating. Pheromone binding to receptor informs cells of the proximity of a mating partner and induces differentiation to a mating competent state. The MAPK activation cascade mediating this signal is made up of Ste11 (a MEK kinase [MEKK]), Ste7 (a MAPK/ERK kinase [MEK]), and the redundant MAPK-related Fus3 and Kss1 enzymes. Another MAPK activation pathway is important for cell integrity and regulates cell wall construction. This cascade consists of Bck1 (a MEKK), the redundant Mkk1 and Mkk2 enzymes (MEKs), and Mpk1 (a MAPK). We exploited these two pathways to learn about the coordination and signal transmission fidelity of MAPK activation cascades. Two lines of evidence suggest that the activities of the mating and cell integrity pathways are coordinated during mating differentiation. First, cells deficient in Mpk1 are susceptible to lysis when they make a mating projection in response to pheromone. Second, Mpk1 activation during pheromone induction coincides with projection formation. The mechanism underlying this coordination is still unknown to us. Our working model is that projection formation generates a mobile second messenger for activation of the cell integrity pathway. Analysis of a STE7 mutation gave us some unanticipated but important insights into parameters important for fidelity of signal transmission. The Ste7 variant has a serine to proline substitution at position 368. Ste7-P368 has higher basal activity than the wild-type enzyme but still requires Ste11 for its function. Additionally, the proline substitution enables the variant to transmit the signal from mammalian Raf expressed in yeast. This novel activity suggests that Ste7-P368 is inherently more permissive than Ste7 in its interactions with MEKKs. Yet, Ste7-P368 cross function in the cell integrity pathway occurs only when it is highly overproduced or when Ste5 is missing. This behavior suggests that Ste5, which has been proposed to be a tether for the kinases in the mating pathway, contributes to Ste7 specificity and fidelity of signal transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.