Background Adoption of molecular techniques to detect Plasmodium falciparum infection has revealed many previously undetected (by microscopy) yet transmissible low-density infections. The proportion of these infections is typically highest in low transmission settings, but drivers of submicroscopic infection remain unclear. Here, we updated a previous systematic review of asexual P falciparum prevalence by microscopy PCR in the same population. We aimed to explore potential drivers of submicroscopic infection and to identify the locations where submicroscopic infections are most common.Methods In this systematic review and meta-analysis we searched PubMed and Web of Science from Jan 1, 2010, until Oct 11, 2020, for cross-sectional studies reporting data on asexual P falciparum prevalence by both microscopy and PCR. Surveys of pregnant women, surveys in which participants had been chosen based on symptoms or treatment, or surveys that did not involve a population from a defined location were excluded. Both the number of individuals tested and the number of individuals who tested positive by microscopy or PCR, or both, for P falciparum infection were extracted. Bayesian regression modelling was used to explore determinants of the size of the submicroscopic reservoir including geographical location, seasonality, age, methodology, and current or historical patterns of transmission.Findings Of 4893 identified studies, we retained 121 after screening and removal of duplicates. 45 studies from a previous systematic review were included giving 166 studies containing 551 cross-sectional survey microscopy and PCR prevalence pairs. Our results show that submicroscopic infections predominate in low-transmission settings across all regions, but also reveal marked geographical variation, with the proportion of infections that are submicroscopic being highest in South American surveys and lowest in west African surveys. Although current transmission levels partly explain these results, we find that historical transmission intensity also represents a crucial determinant of the size of the submicroscopic reservoir, as does the demographic structure of the infected population (with submicroscopic infection more likely to occur in adults than in children) and the PCR or microscopy methodology used. We also observed a small yet significant influence of seasonality, with fewer submicroscopic infections observed in the wet season than the dry season. Integrating these results with estimates of infectivity in relation to parasite density suggests the contribution of submicroscopic infections to transmission across different settings is likely to be highly variable.Interpretation Significant variation in the prevalence of submicroscopic infection exists even across settings characterised by similar current levels of transmission. These differences in submicroscopic epidemiology potentially warrant different approaches to targeting this infected subgroup across different settings to eliminate malaria.
Background Concern that insecticide resistant mosquitoes are threatening malaria control has driven the development of new types of insecticide treated nets (ITNs) and indoor residual spraying (IRS) of insecticide. Malaria control programmes have a choice of vector control interventions although it is unclear which controls should be used to combat the disease. The study aimed at producing a framework to easily compare the public health impact and costeffectiveness of different malaria prevention measures currently in widespread use. Methods We used published data from experimental hut trials conducted across Africa to characterise the entomological effect of pyrethroid-only ITNs versus ITNs combining a pyrethroid insecticide with the synergist piperonyl butoxide (PBO). We use these estimates to parameterise a dynamic mathematical model of Plasmodium falciparum malaria which is validated for two sites by comparing simulated results to empirical data from randomised control trials (RCTs) in Tanzania and Uganda. We extrapolated model simulations for a series of potential scenarios likely across the sub-Saharan African region and include results in an online tool (Malaria INtervention Tool [MINT]) that aims to identify optimum vector control intervention packages for scenarios with varying budget, price, entomological and epidemiological factors.Findings Our model indicates that switching from pyrethroid-only to pyrethroid-PBO ITNs could averted up to twice as many cases, although the additional benefit is highly variable and depends on the setting conditions. We project that annual delivery of long-lasting, non-pyrethroid IRS would prevent substantially more cases over 3-years, while pyrethroid-PBO ITNs tend to be the most cost-effective intervention per case averted. The model was able to predict prevalence and efficacy against prevalence in both RCTs for the intervention types tested. MINT is applicable to regions of sub-Saharan Africa with endemic malaria and provides users with a method of designing intervention packages given their setting and budget.Interpretation The most cost-effective vector control package will vary locally. Models able to recreate results of RCTs can be used to extrapolate outcomes elsewhere to support evidence-based decision making for investment in vector control.
The time-varying reproduction number (Rt) is an important measure of transmissibility during outbreaks. Estimating whether and how rapidly an outbreak is growing (Rt > 1) or declining (Rt < 1) can inform the design, monitoring and adjustment of control measures in real-time. We use a popular R package for Rt estimation, EpiEstim, as a case study to evaluate the contexts in which Rt estimation methods have been used and identify unmet needs which would enable broader applicability of these methods in real-time. A scoping review, complemented by a small EpiEstim user survey, highlight issues with the current approaches, including the quality of input incidence data, the inability to account for geographical factors, and other methodological issues. We summarise the methods and software developed to tackle the problems identified, but conclude that significant gaps remain which should be addressed to enable easier, more robust and applicable estimation of Rt during epidemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.