Ultraviolet (UV) light emitting diodes (LEDs) may be a viable option as a UV light source for advanced oxidation processes (AOPs) utilizing photocatalysts or oxidizing agents such as hydrogen peroxide. The effect of UV-LED duty cycle, expressed as the percentage of time the LED is powered, was investigated in an AOP with hydrogen peroxide, using methylene blue (MB) to assess contaminant degradation. The UV-LED AOP degraded the MB at all duty cycles. However, adsorption of MB onto the LED emitting surface caused a linear decline in reactor performance over time. With regard to the effect of duty cycle, the observed rate constant of MB degradation, after being adjusted to account for the duty cycle, was greater for 5 and 10% duty cycles than higher duty cycles, providing a value approximately 160% higher at 5% duty cycle than continuous operation. This increase in adjusted rate constant at low duty cycles, as well as contaminant fouling of the LED surface, may impact design and operational considerations for pulsed UV-LED AOP systems.
This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance.
This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O 2 min, generally similar to the 49 μg O 2 /min rates observed in controls. Malathion did not alter the respiration ratio of O 2 consumed-to-CO 2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1-3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities.
Intentional and unintentional contamination incidents, such as terrorist attacks, natural disasters, and accidental spills, can result in large volumes of contaminated water. These waters may require pre-treatment before disposal and assurances that treated waters will not adversely impact biological processes at wastewater treatment facilities, or receiving waters. Based on recommendations of an industrial workgroup, this study addresses such concerns by studying electrochemical advanced oxidation process (EAOP) pre-treatment for contaminated waters, using a boron-doped diamond (BDD) anode, prior to discharge to wastewater treatment facilities. Reaction conditions were investigated, and microbial toxicity was assessed using the Microtox® toxicity assay and the Nitrification Inhibition test. A range of contaminants were studied including herbicides, pesticides, pharmaceuticals and flame retardants. Resulting toxicities varied with supporting electrolyte from 5%−92%, often increasing, indicating that microbial toxicity, in addition to parent compound degradation, should be monitored during treatment. These toxicity results are particularly novel because they systematically compare the microbial toxicity effects of a variety of supporting electrolytes, indicating some electrolytes may not be appropriate in certain applications. Further, these results are the first known report of the use of the Nitrification Inhibition test for this application. Overall, these results systematically demonstrate that anodic oxidation using the BDD anode is useful for addressing water contaminated with refractory organic contaminants, while minimizing impacts to wastewater plants or receiving waters accepting EAOP-treated effluent. The results of this study indicate nitrate can be a suitable electrolyte for incident response and, more importantly, serve as a baseline for site specific EAOP usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.