The purpose of this study was to examine how internal versus external focus of attention influences quiet-eye duration during basketball free-throw shooting. Three basketball groups (experts, advanced, novices) had their focus of attention manipulated using verbal instructions to concentrate on the ball (external), concentrate on their hands (internal), or with no instruction at all (control). Fixation durations toward the target were measured and defined as the quiet eye. Results indicated an external focus of attention on the ball lead to a significant decrease in basketball free-throw shooting performance and significant reduction in quiet-eye duration. Better shooting performance was associated with longer quiet-eye duration across all skill levels. These results highlight several areas of further investigation regarding the influence of focus of attention and gaze behaviors in skilled perception.
The quiet eye is a perceptual skill associated with expertise and superior performance; however, little is known about the transfer of quiet eye across domains. We attempted to replicate previous skill-based differences in quiet eye and investigated whether transfer of motor and perceptual skills occurs between similar tasks. Throwing accuracy and quiet eye duration for skilled and less-skilled basketball players were examined in basketball free throw shooting and the transfer task of dart throwing. Skilled basketball players showed significantly higher throwing accuracy and longer quiet eye duration in the basketball free throw task compared to their less-skilled counterparts. Further, skilled basketball players showed positive transfer from basketball to dart throwing in accuracy but not in quiet eye duration. Our results raise interesting questions regarding the measurement of transfer between skills.
In most sports, the development of elite athletes is a long-term process of talent identification and support. Typically, talent selection systems administer a multi-faceted strategy including national coach observations and varying physical and psychological tests when deciding who is chosen for talent development. The aim of this exploratory study was to evaluate the prognostic validity of talent selections by varying groups 10 years after they had been conducted. This study used a unique, multi-phased approach. Phase 1 involved players (n = 68) in 2001 completing a battery of general and sport-specific tests of handball ‘talent’ and performance. In Phase 2, national and regional coaches (n = 7) in 2001 who attended training camps identified the most talented players. In Phase 3, current novice and advanced handball players (n = 12 in each group) selected the most talented from short videos of matches played during the talent camp. Analyses compared predictions among all groups with a best model-fit derived from the motor tests. Results revealed little difference between regional and national coaches in the prediction of future performance and little difference in forecasting performance between novices and players. The best model-fit regression by the motor-tests outperformed all predictions. While several limitations are discussed, this study is a useful starting point for future investigations considering athlete selection decisions in talent identification in sport.
The importance of perceptual-cognitive expertise in sport has been repeatedly demonstrated. In this study we examined the role of different sources of visual information (i.e., foveal versus peripheral) in anticipating volleyball attack positions. Expert (n = 11), advanced (n = 13) and novice (n = 16) players completed an anticipation task that involved predicting the location of volleyball attacks. Video clips of volleyball attacks (n = 72) were spatially and temporally occluded to provide varying amounts of information to the participant. In addition, participants viewed the attacks under three visual conditions: full vision, foveal vision only, and peripheral vision only. Analysis of variance revealed significant between group differences in prediction accuracy with higher skilled players performing better than lower skilled players. Additionally, we found significant differences between temporal and spatial occlusion conditions. Both of those factors interacted separately, but not combined with expertise. Importantly, for experts the sum of both fields of vision was superior to either source in isolation. Our results suggest different sources of visual information work collectively to facilitate expert anticipation in time-constrained sports and reinforce the complexity of expert perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.