Oil and gas extraction frequently produces substantial volumes of produced water, leading to several mechanical and environmental issues. Several methods have been applied over decades, including chemical processes such as in-situ crosslinked polymer gel and preformed particle gel, which are the most effective nowadays. This study developed a green and biodegradable PPG made of PAM and chitosan as a blocking agent for water shutoff, which will contribute to combating the toxicity of several commercially used PPGs. The applicability of chitosan to act as a crosslinker has been confirmed by FTIR spectroscopy and observed by scanning electron microscopy. Extensive swelling capacity measurements and rheological experiments were performed to examine the optimal formulation of PAM/Cs based on several PAM and chitosan concentrations and the effects of typical reservoir conditions, such as salinity, temperature, and pH. The optimum concentrations of PAM with 0.5 wt% chitosan were between 5–9 wt%, while the optimum chitosan amount with 6.5 wt% PAM was in the 0.25–0.5 wt% range, as these concentrations can produce PPGs with high swellability and sufficient strength. The swelling capacity of PAM/Cs is lower in high saline water (HSW) with a TDS of 67.2976 g/L compared with fresh water, which is related to the osmotic pressure gradient between the swelling medium and the PPG. The swelling capacity in freshwater was up to 80.37 g/g, while it is 18.73 g/g in HSW. The storage moduli were higher in HSW than freshwater, with ranges of 1695–5000 Pa and 2053–5989 Pa, respectively. The storage modulus of PAM/Cs samples was higher in a neutral medium (pH = 6), where the fluctuation behavior in different pH conditions is related to electrostatic repulsions and hydrogen bond formation. The increase in swelling capacity caused by the progressive increment in temperature is associated with the amide group’s hydrolysis to carboxylate groups. The sizes of the swollen particles are controllable since they are designed to be 0.63–1.62 mm in DIW and 0.86–1.00 mm in HSW. PAM/Cs showed promising swelling and rheological characteristics while demonstrating long-term thermal and hydrolytic stability in high-temperature and high-salinity conditions.
The rheology of a gel system composed of polyacrylamide (PAM) and chitosan is studied under typical reservoir conditions. The impacts of the degree of chitosan deacetylation, temperature, and salinity on the gelation behavior are assessed. The said system was prepared under ambient conditions and matured for 24 h at altered temperatures ranging from 50 up to 125 °C. An optimum formulation has been identified considering the rheological response and the initial viscosity constraints. The increase in the degree of syneresis with the degree of deacetylation indicates the long-term thermal stability of the gels. Ammonium chloride was an effective retarder for the PAM/chitosan gelant, which delayed the gelation time from 60 to 210 min when 2 wt % is used; however, it compromised the final gel strength. The chitosan/PAM system showed a good rheological behavior and potential as a green plugging agent in high-temperature oil and gas wells. Chitosan could be an alternative for commercial crosslinkers, such as polyethyleneimine.
The effects of various material compositions and reservoir environments on the ultimate strength and swelling kinetics of a commercial preformed particle gel (PPG) have been investigated. This study used different ratios of acrylamide and acrylic acid copolymers with a specific crosslinker concentration. Results have indicated that increasing the acrylic acid proportion enhances the PPGs’ ability to swell but weakens their network structure. In contrast, increasing the crosslinker content decreases the swelling ratio and increases the gel strength. The highest equilibrium swelling capacity among the six preformed particle gel samples was obtained for PPG2, which has the highest acrylic acid amount and the lowest crosslinker content, with a swelling ratio of 2400 g/g in deionized water and 59.8 g/g in brine 1 (67535.8 mg/l). On the contrary, PPG5, with the lowest acrylic acid and highest crosslinker content, has a swelling capacity of 239 g/g and more than 17 g/g in distilled and brine 1, respectively. Yet, PPG5 has the highest swollen gel strength of 615.5 Pa in deionized water and 3344 Pa in brine 1. The PPGs’ swelling ratios showed stepwise improvements along with increasing temperature, notably after 50 °C, yet, the storage modulus (G′) was negatively affected. The PPGs revealed the highest swelling behavior in pH 6–8, decreasing dramatically in more acidic and basic conditions. The swelling ratios of the PPGs in brine 1 at 50 °C were between 12 and 32 g/g, having strengths in the range of 566–5508 Pa, depending on the crosslinker ratio. The PPGs also demonstrated the ability to compete with other commercial PPGs as they have shown physical and thermal stability when aging at 50 °C, specifically those with high crosslinker content (PPG5).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.