Oil and gas extraction frequently produces substantial volumes of produced water, leading to several mechanical and environmental issues. Several methods have been applied over decades, including chemical processes such as in-situ crosslinked polymer gel and preformed particle gel, which are the most effective nowadays. This study developed a green and biodegradable PPG made of PAM and chitosan as a blocking agent for water shutoff, which will contribute to combating the toxicity of several commercially used PPGs. The applicability of chitosan to act as a crosslinker has been confirmed by FTIR spectroscopy and observed by scanning electron microscopy. Extensive swelling capacity measurements and rheological experiments were performed to examine the optimal formulation of PAM/Cs based on several PAM and chitosan concentrations and the effects of typical reservoir conditions, such as salinity, temperature, and pH. The optimum concentrations of PAM with 0.5 wt% chitosan were between 5–9 wt%, while the optimum chitosan amount with 6.5 wt% PAM was in the 0.25–0.5 wt% range, as these concentrations can produce PPGs with high swellability and sufficient strength. The swelling capacity of PAM/Cs is lower in high saline water (HSW) with a TDS of 67.2976 g/L compared with fresh water, which is related to the osmotic pressure gradient between the swelling medium and the PPG. The swelling capacity in freshwater was up to 80.37 g/g, while it is 18.73 g/g in HSW. The storage moduli were higher in HSW than freshwater, with ranges of 1695–5000 Pa and 2053–5989 Pa, respectively. The storage modulus of PAM/Cs samples was higher in a neutral medium (pH = 6), where the fluctuation behavior in different pH conditions is related to electrostatic repulsions and hydrogen bond formation. The increase in swelling capacity caused by the progressive increment in temperature is associated with the amide group’s hydrolysis to carboxylate groups. The sizes of the swollen particles are controllable since they are designed to be 0.63–1.62 mm in DIW and 0.86–1.00 mm in HSW. PAM/Cs showed promising swelling and rheological characteristics while demonstrating long-term thermal and hydrolytic stability in high-temperature and high-salinity conditions.
The effects of various material compositions and reservoir environments on the ultimate strength and swelling kinetics of a commercial preformed particle gel (PPG) have been investigated. This study used different ratios of acrylamide and acrylic acid copolymers with a specific crosslinker concentration. Results have indicated that increasing the acrylic acid proportion enhances the PPGs’ ability to swell but weakens their network structure. In contrast, increasing the crosslinker content decreases the swelling ratio and increases the gel strength. The highest equilibrium swelling capacity among the six preformed particle gel samples was obtained for PPG2, which has the highest acrylic acid amount and the lowest crosslinker content, with a swelling ratio of 2400 g/g in deionized water and 59.8 g/g in brine 1 (67535.8 mg/l). On the contrary, PPG5, with the lowest acrylic acid and highest crosslinker content, has a swelling capacity of 239 g/g and more than 17 g/g in distilled and brine 1, respectively. Yet, PPG5 has the highest swollen gel strength of 615.5 Pa in deionized water and 3344 Pa in brine 1. The PPGs’ swelling ratios showed stepwise improvements along with increasing temperature, notably after 50 °C, yet, the storage modulus (G′) was negatively affected. The PPGs revealed the highest swelling behavior in pH 6–8, decreasing dramatically in more acidic and basic conditions. The swelling ratios of the PPGs in brine 1 at 50 °C were between 12 and 32 g/g, having strengths in the range of 566–5508 Pa, depending on the crosslinker ratio. The PPGs also demonstrated the ability to compete with other commercial PPGs as they have shown physical and thermal stability when aging at 50 °C, specifically those with high crosslinker content (PPG5).
Utilizing green corrosion inhibitors has been classified among the most efficient and economical mitigation practices against metallic degradation and failure. This study aims to integrate the features of green and complementary properties of polyepoxysuccinic acid (PESA) and polyacrylamide (PAM) for steel corrosion inhibition. A novel PESA-grafted-PAM (PESA-PAM) has been first-ever synthesized in this research study and deployed as a corrosion inhibitor for C-steel in 1.0 M HCl solution. Eco-toxicity prediction confirmed the environmentally friendly properties acquired by the synthesized inhibitor. Electrochemical, kinetics, and surface microscopic studies were carried out to gain a holistic view of C-steel corrosion behavior with the PESAPAM. Furthermore, the performance of PESAPAM was compared with that of the pure PESA under the same testing conditions. Results revealed predominant inhibitive properties of PESAPAM with an inhibition efficiency (IE) reaching 90% at 500 mg•L −1 at 25 °C. Grafting PAM onto the PESA chain showed an overall performance improvement of 109% from IE% of 43 to 90%. Electrochemical measurements revealed a charge transfer-controlled corrosion mechanism and the formation of a thick double layer on the steel surface. The potentiodynamic study classified PESAPAM as a mixed-type inhibitor. Furthermore, the investigation of C-steel corrosion kinetics with the presence of PESAPAM predicted an activation energy of 85 kJ•mol −1 , correlated with a physical adsorption behavior. Finally, performed scanning electron microscopy and energy-dispersive X-ray analyses confirmed the adsorption of PESA and PESAPAM, with superior coverage of PESAPAM onto the steel surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.