SummaryBackgroundInformation about the global structure of agriculture and nutrient production and its diversity is essential to improve present understanding of national food production patterns, agricultural livelihoods, and food chains, and their linkages to land use and their associated ecosystems services. Here we provide a plausible breakdown of global agricultural and nutrient production by farm size, and also study the associations between farm size, agricultural diversity, and nutrient production. This analysis is crucial to design interventions that might be appropriately targeted to promote healthy diets and ecosystems in the face of population growth, urbanisation, and climate change.MethodsWe used existing spatially-explicit global datasets to estimate the production levels of 41 major crops, seven livestock, and 14 aquaculture and fish products. From overall production estimates, we estimated the production of vitamin A, vitamin B12, folate, iron, zinc, calcium, calories, and protein. We also estimated the relative contribution of farms of different sizes to the production of different agricultural commodities and associated nutrients, as well as how the diversity of food production based on the number of different products grown per geographic pixel and distribution of products within this pixel (Shannon diversity index [H]) changes with different farm sizes.FindingsGlobally, small and medium farms (≤50 ha) produce 51–77% of nearly all commodities and nutrients examined here. However, important regional differences exist. Large farms (>50 ha) dominate production in North America, South America, and Australia and New Zealand. In these regions, large farms contribute between 75% and 100% of all cereal, livestock, and fruit production, and the pattern is similar for other commodity groups. By contrast, small farms (≤20 ha) produce more than 75% of most food commodities in sub-Saharan Africa, southeast Asia, south Asia, and China. In Europe, west Asia and north Africa, and central America, medium-size farms (20–50 ha) also contribute substantially to the production of most food commodities. Very small farms (≤2 ha) are important and have local significance in sub-Saharan Africa, southeast Asia, and south Asia, where they contribute to about 30% of most food commodities. The majority of vegetables (81%), roots and tubers (72%), pulses (67%), fruits (66%), fish and livestock products (60%), and cereals (56%) are produced in diverse landscapes (H>1·5). Similarly, the majority of global micronutrients (53–81%) and protein (57%) are also produced in more diverse agricultural landscapes (H>1·5). By contrast, the majority of sugar (73%) and oil crops (57%) are produced in less diverse ones (H≤1·5), which also account for the majority of global calorie production (56%). The diversity of agricultural and nutrient production diminishes as farm size increases. However, areas of the world with higher agricultural diversity produce more nutrients, irrespective of farm size.InterpretationOur results show that farm s...
Over the course of the 20th century, fossil fuels became the dominant energy input to most of the world's fisheries. Although various analyses have quantified fuel inputs to individual fisheries, to date, no attempt has been made to quantify the global scale and to map the distribution of fuel consumed by fisheries. By integrating data representing more than 250 fisheries from around the world with spatially resolved catch statistics for 2000, we calculate that globally, fisheries burned almost 50 billion L of fuel in the process of landing just over 80 million t of marine fish and invertebrates for an average rate of 620 L t(-1). Consequently, fisheries account for about 1.2% of global oil consumption, an amount equivalent to that burned by the Netherlands, the 18th-ranked oil consuming country globally, and directly emit more than 130 million t of CO2 into the atmosphere. From an efficiency perspective, the energy content of the fuel burned by global fisheries is 12.5 times greater than the edible-protein energy content of the resulting catch.
Despite the many scientific and public discussions on the sustainability of fisheries, there are still great differences in both perception and definition of the concept. Most authors now suggest that sustainability is best defined as the ability to sustain goods and services to human society, with social and economic factors to be considered along with environmental impacts. The result has been that each group (scientists, economists, non-governmental organizations (NGOs), etc.) defines "sustainable seafood" using whatever criteria it considers most important, and the same fish product may be deemed sustainable by one group and totally unsustainable by another one. We contend, however, that there is now extensive evidence that an ecological focus alone does not guarantee long-term sustainability of any form and that seafood sustainability must consistently take on a socio-ecological perspective if it is to be effective across cultures and in the future. The sustainability of seafood production depends not on the abundance of a fish stock, but on the ability of the fishery management system to adjust fishing pressure to appropriate levels. While there are scientific standards to judge the sustainability of food production, once we examine ecological, social, and economic aspects of sustainability, there is no unique scientific standard.Résumé : Malgré les nombreuses discussions scientifiques et publiques sur la durabilité des pêches, de grandes différences persistent quant à la perception et à la définition de ce concept. La plupart des auteurs suggèrent actuellement que la meilleure définition de la durabilité est la capacité de maintenir des biens et services pour la société humaine, en tenant compte de facteurs sociaux et économiques, ainsi que des impacts sur l'environnement. Il en découle que chaque groupe (scientifiques, écono-mistes, ONG (les organisations nongouvernementales), etc.) définit les « poissons et fruits de mer durables » sur la base des critères qu'il juge les plus importants, et un produit donné peut être jugé durable par un groupe, alors qu'un autre groupe estime qu'il n'est pas du tout durable. Nous soutenons toutefois qu'il existe une vaste preuve à l'effet qu'une seule optique écologique ne garantit aucune forme de durabilité à long terme, et que la durabilité des poissons et fruits de mer doit uniformément reposer sur une perspective socioécologique pour constituer un concept efficace pour l'avenir, peu importe la culture. La durabilité de la production de poissons et fruits de mer dépend non pas de l'abondance d'un stock de poissons, mais de la capacité du système de gestion des pêches à ajuster la pression de pêche aux bons niveaux. S'il existe des normes scientifiques pour juger de la durabilité de la production alimentaire, il n'y a pas de norme scientifique unique pour l'évaluation des aspects écologiques, sociaux et économiques de la durabilité. [Traduit par la Rédaction]
Highlights d The Sustainable Development Goals link society, the economy, and the biosphere d Indicator assessments of progress toward the SDGs do not account for these links d Thus, progress assessments mask important trade-offs and synergies among the goals d This oversight risks reducing society's capacity to achieve sustainability
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.