Little is known about the pathogenic mechanisms of IgA nephropathy, despite being the most prevalent form of glomerulonephritis in humans. We report in this study that in (New Zealand White (NZW) × C57BL/6)F1 mice predisposed to autoimmune diseases, the expression of a human bcl-2 (hbcl-2) transgene in B cells promotes a CD4-dependent lupus-like syndrome characterized by IgG and IgA hypergammaglobulinemia, autoantibody production, and the development of a fatal glomerulonephritis. Histopathological analysis of glomerular lesions reveals that the glomerulonephritis observed in these animals resembles that of human IgA nephropathy. The overexpression of Bcl-2 in B cells selectively enhances systemic IgA immune responses to T-dependent Ags. Significantly, serum IgA purified from (NZW × C57BL/6)F1-hbcl-2 transgenic mice, but not from nontransgenic littermates, shows reduced levels of galactosylation and sialylation and an increased ability to deposit in the glomeruli, as observed in human patients with IgA nephropathy. Our results indicate that defects in the regulation of B lymphocyte survival associated with aberrant IgA glycosylation may be critically involved in the pathogenesis of IgA nephropathy, and that (NZW × C57BL/6)F1-hbcl-2 Tg mice provide a new experimental model for this form of glomerulonephritis.
Increased expression of Goodpasture antigen-binding protein (GPBP), a protein that binds and phosphorylates basement membrane collagen, has been associated with immune complex-mediated pathogenesis. However, recent reports have questioned this biological function and proposed that GPBP serves as a cytosolic ceramide transporter (CERT L ). Thus, the role of GPBP in vivo remains unknown. New Zealand White (NZW) mice are considered healthy animals although they convey a genetic predisposition for immune complex-mediated glomerulonephritis. Here we show that NZW mice developed age-dependent lupus-prone autoimmune response and immune complex-mediated glomerulonephritis characterized by elevated GPBP, glomerular basement membrane (GBM) collagen disorganization and expansion, and deposits of IgA on disrupted GBM. Transgenic overexpression of human GPBP (hGPBP) in non-lupusprone mice triggered similar glomerular abnormalities including deposits of IgA on a capillary GBM that underwent dissociation, in the absence of an evident autoimmune response. We provide in vivo evidence that GPBP regulates GBM collagen organization and its elevated expression causes dissociation and subsequent accumulation of IgA on the GBM. Finally, we describe a previously unrecognized pathogenic mechanism that may be relevant in human primary immune complex-mediated glomerulonephritis. (Am J Pathol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.