Background and Aim:The immunocompromised condition is considered a defect in the immune system. This condition tends to increase the risk of oral candidiasis, due to the inability of the immune system to eliminate the adhesion of Candida albicans and leads to systemic candidiasis with a mortality rate of 60%. Green tea (Camellia sinensis) contains potential antioxidant and immunomodulatory which acts as anticancer, antifungal, and antivirus agent. The aim of this study was to invent herbal-based medicine, which acts as an immunomodulator and antifungal agent to treat fungal infection in immunocompromised patients.Materials and Methods:Thirty-five immunocompromised Wistar rats induced with C. albicans were divided into 7 groups (n=5): Control group (C+); treated for 4 days with green tea extract 1.25% (GT 4), epigallocatechin gallate (EGCG) 1% (EGCG 4), EGC 1% (EGC 4); and treated for 7 days with green tea extract 1.25% (GT 7), EGCG 1% (EGCG 7), and EGC 1% (EGC 7). Tongue tissue was collected and analyzed with immunohistochemistry staining using monoclonal antibody; interleukin (IL)-17A, IL-8, and human beta-defensin 2 (HBD)-2. Data were analyzed using analysis of variance test and Tukey honest significant differences test.Results:The expression of IL-17A, IL-8, and HBD-2 was significantly increased (p=0.000) after green tea extract administration in 7 days, whereas in 7 days, the expression of IL-8, IL-17A, and HBD-2 after EGCG and EGC administration did not give a significant result (p>0.005).Conclusion:Within the limits of this study, green tea extract has the ability as an immunomodulatory agent in an immunocompromised patient infected by C. albicans through expression augmentation of IL-8, IL-17A, and HBD-2 compared to EGCG and EGC.
Background: Annona squamosa is reported has a significant cytotoxic activity in some cancer cells. Objectives: Thus, this study aim to investigate Annona squamosa leaf extract induced by chitosan nanoparticles (nano-ASLE) to enhance their biological activity as anticancer agent on HeLa cells. Methods: Nano-ASLE (50, 100, 200, 400 µg/mL in DMSO) given on HeLa cells to determined IC 50 value by MTT assay. Then, it was devided into three groups as follow IC 50 , 2IC 50 , 4IC 50 continued with analysis of caspase-3 expression. Results: The present study demonstrated that nano-ASLE can surpress HeLa cells proliferation with the IC 50 value of 344.48 µg/mL and rapid enhancement of caspase-3 activity has the mean score of 65.3 cell expression and the lowest score shows 45.3 cell expression. Conclusion: Nano-ASLE lead to HeLa cell death via the mitochondrial pathway on caspase-3 expression. In addition, the further studies are needed to obtain the loading efficiency, release of drug concentration and in vivo study of nano-ASLE to suppress HeLa cells.
To investigate the expression of High Mobility Group Box 1 (HMGB1) and Heat Shock Protein-70 (HSP-70) during orthodontic tooth movement (OTM) after (-)-Epigallocatechin-3-Gallate (EGCG) in East Java Green Tea (Camelia Sinensis) Methanolic Extract (GTME) administration in vivo. Material and Methods: 28 Wistar rats (Rattus Novergicus) was used and divided into 4 groups accordingly: K-without EGCG and OTM; K+ with OTM, without EGCG for 14 days; T1with OTM for 14 days and EGCG for 7 days; treatment group 2 (T2) with OTM and EGCG for 14 days. OTM animal model was achieved through the installation of the OTM device by means of NiTi close coil spring with 10g force placed between the first incisor and first maxillary molars. The samples were terminated on Day 14. The pre-maxillary was isolated for the immunohistochemical examination. Analysis of Variance (ANOVA) then continued with Tukey Honest Significant Difference (HSD) (p<0.05) was performed to analyze the data. Results: The highest HMGB1 and HSP-70 expression were found in the K+ group pressure side, meanwhile the lowest HMGB1 and HSP-70 expression were found in K-group tension side in the alveolar bone. There was a significant decrease of HMGB1 and HSP-70 expression in T2 compared to T1 and K+ with significant between groups (p<0.05; p=0.0001). Conclusion: The decreased expression of HMGB1 and HSP-70 in alveolar bone of OTM wistar rats due to post administration of GTME that consisted EGCG.
This study aimed to prepare Annona squamosa leaf extract-loaded chitosan nanoparticles (nano-ASLE) against human colon cancer (WiDr) cells. Nano-ASLE was made with ionic gelation method. Four concentrations of the nano-ASLE (50, 100, 200, and 400 μg/mL) in dimethyl sulfoxide were prepared on WiDr cells to determine the IC50 value using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Then, it was divided into three groups of concentration of IC50, 2IC50, and 4IC50 and continued with analysis of caspase-3 expression and cell cycle arrest. The results of particles size were obtained 535.1 nm and showed potent cytotoxicity with IC50 292.39 μg/mL. The expression of caspase-3 increased significantly and caused cell cycle arrest at the G2/M phase and induced apoptosis on WiDr cells. Further studies are needed to obtain the loading efficiency, release of drug concentration, and in vivo study of nano-ASLE to suppress WiDr cells.
Background and Aim: Cervical cancer accounts for the fourth as a cause of death from cancer in women worldwide, with more than 85% of events and deaths occurring in developing countries. The main problems of chemotherapy are the lack of selectivity and drug resistance. This study aimed to investigate the signal transduction of chitosan-based Pinus merkusii bark extract nanoparticles (Nano-PMBE) as an anticancer on HeLa cell line. Materials and Methods: Nano-PMBE was prepared based on the ionic gelation method. Its anticancer activities in HeLa cells were investigated through cytotoxicity test, cell cycle, and apoptosis analysis. The expression of p53 and caspase-9 was also observed. Results: The results showed that Nano-PMBE has a size of 394.3 nm. Meanwhile, the Nano-PMBE was cytotoxic to HeLa cells ( IC50 of 384.10 μg/ml), caused G0/G1 phase arrest and cell apoptosis in HeLa cells. Besides, the expression of p53 and caspase-9 has increased. Conclusion: The results showed a notable anticancer effect of Nano-PMBE by arresting the cell cycle and inducing apoptosis in HeLa cells, suggesting that it might have therapeutic potential for cervical cancer. Further research is needed to find out more about the anticancer mechanism of Nano-PMBE in HeLa cells to in vivo and clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.