Carnivory in plants is an adaptation strategy to nutrient-poor environments and soils. Carnivorous plants obtain some additional mineral nutrients by trapping and digesting prey; the genus Nepenthes is helped by its specialized pitcher traps. To make the nutrients available, the caught prey needs to be digested, a process that requires the concerted activity of several hydrolytic enzymes. To identify and investigate the various enzymes involved in this process, fluid from Nepenthes traps has been analysed in detail. In this study, a novel type of Nepenthes endochitinase was identified in the digestion fluid of closed pitchers. The encoding endochitinase genes have been cloned from eight different Nepenthes species. Among these, the deduced amino acid sequence similarity was at least 94.9%. The corresponding cDNA from N. rafflesiana was heterologously expressed, and the purified protein, NrChit1, was biochemically characterized. The enzyme, classified as a class III acid endochitinase belonging to family 18 of the glycoside hydrolases, is secreted into the pitcher fluid very probably due to the presence of an N-terminal signal peptide. Transcriptome analyses using real-time PCR indicated that the presence of prey in the pitcher up-regulates the endochitinase gene not only in the glands, which are responsible for enzyme secretion, but at an even higher level, in the glands’ surrounding tissue. These results suggest that in the pitchers’ tissues, the endochitinase as well as other proteins from the pitcher fluid might fulfil a different, primary function as pathogenesis-related proteins.
The genus Campylobacter comprises 17 species, some of which are important animal and human pathogens. To gain more insight into the genetic relatedness of this genus and to improve the molecular tools available for diagnosis, a universal sequencing approach was established for the gene encoding the beta-subunit of RNA polymerase (rpoB) for the genus Campylobacter. A total of 59 strains, including the type strains of currently recognized species as well as field isolates, were investigated in the study. A primer set specific for Campylobacter species enabled straightforward amplification and sequencing of a 530 bp fragment of the rpoB gene. The 16S rRNA gene sequences of all of the strains were determined in parallel. A good congruence was obtained between 16S rRNA and rpoB gene sequence-based trees within the genus Campylobacter. The branching of the rpoB tree was similar to that of the 16S rRNA gene tree, even though a few discrepancies were observed for certain species. The resolution of the rpoB gene within the genus Campylobacter was generally much higher than that of the 16S rRNA gene sequence, resulting in a clear separation of most species and even some subspecies. The universally applicable amplification and sequencing approach for partial rpoB gene sequence determination provides a powerful tool for DNA sequence-based discrimination of Campylobacter species.The genus Campylobacter was first proposed by M. Sebald and M. Véron in 1963 and included only the type species Campylobacter fetus and Campylobacter bubulus, now known as Campylobacter sputorum (Sebald & Véron, 1963). These taxa had formerly been classified as Vibrio species. In 1973, M. Véron and R. Chatelain included several misclassified Vibrio in the distinct Campylobacter genus based on serological, biochemical and DNA-DNA hybridization investigations (On, 2001). Since then, the taxonomy of the genus has changed dramatically. At present, it comprises 17 species with validly published names and six recognized subspecies (On, 2001;Foster et al., 2004). In addition, strains belonging to C. sputorum are divided into three biovars, sputorum, fecalis and paraureolyticus, on the basis of their ability to produce catalase or urease Vandamme & On, 2001).In general, members of the genus Campylobacter colonize the mucosal surfaces of the intestinal tract, oral cavity or urogenital tract of healthy, as well as diseased, humans and animals, especially birds. Several species may act as pathogens, causing disease in both human and animal hosts. Twelve of the 17 Campylobacter species are associated with human diseases. Campylobacter jejuni and Campylobacter coli are particularly frequent causative agents of human bacterial intestinal disorders worldwide (Skirrow, 1994). There have also been reported cases of diarrhoea in man caused by Campylobacter upsaliensis and Campylobacter lari, but the frequency of these infections is very low (Bourke et al., 1998;Van Doorn et al., 1998). Occasionally, Campylobacter species are implicated as causative agents of pericard...
The vinegar fly Drosophila melanogaster is equipped with two peripheral olfactory organs, antenna and maxillary palp. The antenna is involved in finding food, oviposition sites and mates. However, the functional significance of the maxillary palp remained unknown. Here, we screened the olfactory sensory neurons of the maxillary palp (MP-OSNs) using a large number of natural odor extracts to identify novel ligands for each MP-OSN type. We found that each type is the sole or the primary detector for a specific compound, and detects these compounds with high sensitivity. We next dissected the contribution of MP-OSNs to behaviors evoked by their key ligands and found that MP-OSNs mediate short- and long-range attraction. Furthermore, the organization, detection and olfactory receptor (Or) genes of MP-OSNs are conserved in the agricultural pest D. suzukii. The novel short and long-range attractants could potentially be used in integrated pest management (IPM) programs of this pest species.DOI: http://dx.doi.org/10.7554/eLife.14925.001
As odor information plays a vital role in the life of moths, their olfactory sense has evolved into a highly specific and sensitive apparatus relevant to reproduction and survival. The key players in the detection of odorants are olfactory receptor (OR) proteins. Here we identify four OR-encoding genes differentially expressed in the antennae of males and females of the sphingid moth Manduca sexta. Two male-specific receptors (the previously reported MsexOR-1 and the newly identified MsexOR-4) show great resemblance to other male moth pheromone ORs. The putative pheromone receptors are co-expressed with the co-receptor involved in general odorant signal transduction, the DmelOr83b homolog MsexOR-2. One female-specific receptor (MsexOR-5) displays similarities to BmorOR-19, a receptor in Bombyx mori tuned to the detection of the plant odor linalool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.