Cybersecurity is an important field in our digital world. It protects computer systems and communication networks against theft or sabotage of information to guarantee trouble-free operation in a trustworthy working environment. This article gives an overview of a cybersecurity assessment process and an appropriate Cybersecurity Management (CSM) implementation for future digital agriculture applications. The cybersecurity assessment follows the IEC 62443 cybersecurity standard for Industrial Automation Control Systems (IACS), adapted to Agriculture Automation Control Systems (AACS). However, the research results showed application differences; thus, an expansion of the standard is necessary to fill the existing open security gaps in agriculture. Agriculture differs from industrial control systems because of the outdoor located field area, which requires other forms of security. An appropriate cybersecurity standard for the agriculture domain is not currently available. However, such a standard will be necessary to define generally applicable procedures to protect agricultural assets against cyberattacks. The cybersecurity standards and regulations existing today (2021) are not sufficient for securing the agriculture domain against new and domain-specific cyberattacks. This article describes some of the cyber vulnerabilities identified and provides initial recommendations for addressing them.
The digital future in agriculture has started a long time ago, with Smart Farming and Agriculture 4.0 being synonyms that describe the change in this domain. Digitalization stands for the needed technology to realize the transformation from conventional to modern agriculture. The continuously monitoring of all environmental data and the recording of all work parameters enables data collections, which are used for precise decision making and the planning of in-time missions. To guarantee secure and genuine data, appropriate data security measures must be provided. This paper will present a research work in the EU AFarCloud project. It introduces the important LoRaWAN data communication technology for the transmission of sensor data and to present a concept for improving data security and protection of sensor nodes. Data and device protection are becoming increasingly important, particularly around LoRaWAN applications in agriculture. In the first part, a general assessment of the security situation in modern agriculture, data encryption methods, and the LoRaWAN data communication technology, will be presented. Then, the paper explains the security improvement concept by using a Hardware Secure Module (HSM), which not only improves the data security but also prevents device manipulations. A real system implementation (Security Evaluation Demonstrator, SED) helps to validate the correctness and the correct function of the advanced security improvement. Finally, an outlook on necessary future works declares what should be done in order to make the digital agriculture safe and secure in the same extent as Industrial Control Systems (ICSs) will be today.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.