Background: Cardiovascular magnetic resonance (CMR) imaging is commonly used to diagnose acute myocarditis. However, the natural history of CMR-based tissue markers and their association with left ventricular recovery is poorly explored. We prospectively investigated the natural history of CMR-based myocardial injury and chamber remodeling over 12 months in patients with suspected acute myocarditis. Methods: One hundred patients with suspected acute myocarditis were enrolled. All underwent CMR evaluations at baseline and 12 months, inclusive of T2 and late gadolinium enhancement. Blinded quantitative analyses compared left ventricular chamber volumes, function, myocardial edema, and necrosis at each time point using predefined criteria. The predefined primary outcomes were improvement in left ventricular ejection fraction ≥10% and improvement in the indexed left ventricular end diastolic volume ≥10% at 12 months. Results: The mean age was 39.9±14.5 years (82 male) with baseline left ventricular ejection fraction of 57.1±11.2%. A total of 72 patients (72%) showed late gadolinium enhancement at baseline with 57 (57%) having any T2 signal elevation. Left ventricular volumes and EF improved significantly at 12 months. Global late gadolinium enhancement extent dropped from 8.5±9.2% of left ventricular mass to 3.0±5.2% ( P =0.0001) with prevalence of any late gadolinium enhancement dropping to 48%. Reductions in global T2 signal ratio occurred at 12 months (1.85±0.3 to 1.56±0.2; P =0.0001) with prevalence of T2 ratio ≥2.0 dropping to 7%. Neither marker provided associations with the primary outcomes. Conclusions: In clinically suspected acute myocarditis, significant reductions in tissue injury markers occur during the first 12 months of convalescence. Neither the presence nor extent of the investigated CMR-based tissue injury markers were predictive of our pre-defined function or remodeling outcomes at 12 months in this referral population.
Background The overlap between cancer and cardiovascular care continues to expand, with intersections emerging before, during, and following cancer therapies. To date, emphasis has been placed on how cancer therapeutics influence downstream cardiac health. However, whether active malignancy itself influences chamber volumes, function, or overall myocardial tissue health remains uncertain. We sought to perform a comprehensive cardiovascular magnetic resonance‐based evaluation of cardiac health in patients with chemotherapy‐naïve cancer with comparison with a healthy volunteer population. Methods and Results Three‐hundred and eighty‐one patients with active breast cancer or lymphoma before cardiotoxic chemotherapy exposure were recruited in addition to 102 healthy volunteers. Both cohorts underwent standardized cardiovascular magnetic resonance imaging with quantification of chamber volumes, ejection fraction, and native myocardial T1. Left ventricular mechanics were incrementally assessed using three‐dimensional myocardial deformation analysis, providing global longitudinal, circumferential, radial, and principal peak‐systolic strain amplitude and systolic strain rate. The mean age of patients with cancer was 53.8±13.4 years; 79% being women. Despite similar left ventricular ejection fraction, patients with cancer showed smaller chambers, increased strain amplitude, and systolic strain rate in both conventional and principal directions, and elevated native T1 versus sex‐matched healthy volunteers. Adjusting for age, sex, hypertension, and diabetes mellitus, the presence of cancer remained associated with these cardiovascular magnetic resonance parameters. Conclusions The presence of cancer is independently associated with alterations in cardiac chamber size, function, and objective markers of tissue health. Dedicated research is warranted to elucidate pathophysiologic mechanisms underlying these findings and to explore their relevance to the management of patients with cancer referred for cardiotoxic therapies.
Background Dilated cardiomyopathy (DCM) is increasingly recognized as a heterogenous disease with distinct phenotypes on late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging. While mid-wall striae (MWS) fibrosis is a widely recognized phenotypic risk marker, other fibrosis patterns are prevalent but poorly defined. Right ventricular (RV) insertion (RVI) site fibrosis is commonly seen, but without objective criteria has been considered a non-specific finding. In this study we developed objective criteria for RVI fibrosis and studied its clinical relevance in a large cohort of patients with DCM. Methods We prospectively enrolled 645 DCM patients referred for LGE-CMR. All underwent standardized imaging protocols and baseline health evaluations. LGE images were blindly scored using objective criteria, inclusive of RVI site and MWS fibrosis. Associations between LGE patterns and CMR-based markers of adverse chamber remodeling were evaluated. Independent associations of LGE fibrosis patterns with the primary composite clinical outcome of heart failure admission or death were determined by multivariable analysis. Results The mean age was 56 ± 14 (28% female) with a mean left ventricular (LV) ejection fraction (LVEF) of 37%. At a median of 1061 days, 129 patients (20%) experienced the primary outcome. Any abnormal LGE was present in 306 patients (47%), inclusive of 274 (42%) meeting criteria for RVI site fibrosis and 167 (26%) for MWS fibrosis. All with MWS fibrosis showed RVI site fibrosis. Solitary RVI site fibrosis was associated with higher bi-ventricular volumes [LV end-systolic volume index (78 ± 39 vs. 66 ± 33 ml/m2, p = 0.01), RV end-diastolic volume index (94 ± 28 vs. 84 ± 22 ml/m2 (p < 0.01), RV end-systolic volume index (56 ± 26 vs. 45 ± 17 ml/m2, p < 0.01)], lower bi-ventricular function [LVEF 35 ± 12 vs. 39 ± 10% (p < 0.01), RV ejection fraction (RVEF) 43 ± 12 vs. 48 ± 10% (p < 0.01)], and higher extracellular volume (ECV). Patient with solitary RVI site fibrosis experienced a non-significant 1.4-fold risk of the primary outcome, increasing to a significant 2.6-fold risk when accompanied by MWS fibrosis. Conclusions RVI site fibrosis in the absence of MWS fibrosis is associated with bi-ventricular remodelling and intermediate risk of heart failure admission or death. Our study findings suggest RVI site fibrosis to be pre-requisite for the incremental development of MWS fibrosis, a more advanced phenotype associated with greater LV remodeling and risk of clinical events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.