In recent years, steerable catheters have been developed to combat the effects of the dynamic cardiac environment. Mechanically actuated steerable catheters appear the most in the clinical setting; however, they are bound to a number of mechanical limitations. The aim of this research is to gain insight in these limitations and use this information to develop a new prototype of a catheter with increased steerability. The main limitations in mechanically steerable catheters are identified and analysed, after which requirements and solutions are defined to design a multi-steerable catheter. Finally, a prototype is built and a proof-of-concept test is carried out to analyse the steering functions. The mechanical analysis results in the identification of five limitations: (1) low torsion, (2) shaft shortening, (3) high unpredictable friction, (4) coupled tip-shaft movements, and (5) complex cardiac environment. Solutions are found to each of the limitations and result in the design of a novel multi-steerable catheter with four degrees of freedom. A prototype is developed which allows the dual-segmented tip to be steered over multiple planes and in multiple directions, allowing a range of complex motions including S-shaped curves and circular movements. A detailed analysis of limitations underlying mechanically steerable catheters has led to a new design for a multi-steerable catheter for complex cardiac interventions. The four integrated degrees of freedom provide a high variability of tip directions, and repetition of the bending angle is relatively simple and reliable. The ability to steer inside the heart with a variety of complex shaped curves may potentially change conventional approaches in interventional cardiology towards more patient-specific and lower complexity procedures. Future directions are headed towards further design optimizations and the experimental validation of the prototype.
In laparoscopy, a small incision size improves the surgical outcome but increases at the same time the rigidity of the instrument, with consequent impairment of the surgeon’s maneuverability. Such reduction introduces new challenges, such as the loss of wrist articulation or the impossibility of overcoming obstacles. A possible approach is using multi-steerable cable-driven instruments fully mechanical actuated, which allow great maneuverability while keeping the wound small. In this work, we compared the usability of the two most promising cable configurations in 3D printed multi-steerable instruments: a parallel configuration with all cables running straight from the steerable shaft to the handle; and a multi configuration with straight cables in combination with helical cables. Twelve participants were divided into two groups and asked to orient the instrument shaft and randomly hit six targets following the instructions in a laparoscopic simulator. Each participant carried out four trials (two trials for each instrument) with 12 runs per trial. The average task performance time showed a significant decrease over the first trial for both configurations. The decrease was 48% for the parallel and 41% for the multi configuration. Improvement of task performance times reached a plateau in the second trial with both instruments. The participants filled out a TLX questionnaire after each trial. The questionnaire showed a lower burden score for the parallel compared to multi configuration (23% VS 30%). Even though the task performance time for both configurations was comparable, a final questionnaire showed that 10 out of 12 participants preferred the parallel configuration due to a more intuitive hand movement and the possibility of individually orienting the distal end of the steerable shaft.
Parts produced with metal additive manufacturing often suffer from a poor surface finish. Surface finishing techniques are effective to improve the quality of 3D printed surfaces, however they have as downsides that they also slightly change the geometry of the part, in an unpredictable way. This effect on the geometrical features of complex parts has received little attention. In this research, we illustrate a method to visualize the impact of surface finishing techniques on geometrical features, as well as their effectiveness on parts with high shape-complexity, by using centrifugal disk finishing as a case study. We designed and 3D printed test parts with different features using selective laser melting, which were coated with a blue metal lacquer prior to polishing. After polishing, the blue lacquer was eroded away from the spots that were easily reached by the polishing process, yet had remained on the surfaces that could not be reached by the process. We used measurements of material removal and image processing of the remaining blue lacquer on the surfaces to analyze these effects. Using this method, we were able to derive a number of specific design guidelines that can be incorporated while designing metal AM parts for centrifugal disk finishing. We suggest that this visualization method can be applied to different polishing methods to gain insight into their influence, as well as being used as an aid in the design process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.