Despite sustained research, application of lead halide perovskites in field-effect transistors (FETs) has substantial concerns in terms of operational instabilities and hysteresis effects which are linked to its ionic nature. Here, we investigate the mechanism behind these instabilities and demonstrate an effective route to suppress them to realize high-performance perovskite FETs with low hysteresis, high threshold voltage stability (ΔVt < 2 V over 10 hours of continuous operation), and high mobility values >1 cm2/V·s at room temperature. We show that multiple cation incorporation using strain-relieving cations like Cs and cations such as Rb, which act as passivation/crystallization modifying agents, is an effective strategy for reducing vacancy concentration and ion migration in perovskite FETs. Furthermore, we demonstrate that treatment of perovskite films with positive azeotrope solvents that act as Lewis bases (acids) enables a further reduction in defect density and substantial improvement in performance and stability of n-type (p-type) perovskite devices.
Precise control of the microstructure in organic semiconductors (OSCs) is essential for developing high‐performance organic electronic devices. Here, a comprehensive charge transport characterization of two recently reported rigid‐rod conjugated polymers that do not contain single bonds in the main chain is reported. It is demonstrated that the molecular design of the polymer makes it possible to achieve an extended linear backbone structure, which can be directly visualized by high‐resolution scanning tunneling microscopy (STM). The rigid structure of the polymers allows the formation of thin films with uniaxially aligned polymer chains by using a simple one‐step solution‐shear/bar coating technique. These aligned films show a high optical anisotropy with a dichroic ratio of up to a factor of 6. Transport measurements performed using top‐gate bottom‐contact field‐effect transistors exhibit a high saturation electron mobility of 0.2 cm2 V−1 s−1 along the alignment direction, which is more than six times higher than the value reported in the previous work. This work demonstrates that this new class of polymers is able to achieve mobility values comparable to state‐of‐the‐art n‐type polymers and identifies an effective processing strategy for this class of rigid‐rod polymer system to optimize their charge transport properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.