BACKGROUND: Visible light, in particular blue light, has been identified as an additional contributor to cutaneous photoageing. However, clinical studies demonstrating the clear effect of blue light on photoageing are still scarce, and so far, most studies have focused on broad-spectrum visible light. Although there is evidence for increased skin pigmentation, the underlying mechanisms of photoageing in vivo are still unclear. Furthermore, there is still a need for active ingredients to significantly protect against blue light-induced hyperpigmentation in vivo. Our study had two aims: to detect visible changes in skin pigmentation following repeated irradiation of the skin with LED-based blue light and to reduce pigmentation using suitable active ingredients. METHOD: We conducted a randomized, double-blind and placebocontrolled clinical study on 33 female volunteers with skin phototypes III and IV. We used a repetitive blue light (4 9 60 J cm À2 , 450 nm) irradiation protocol on the volunteers' inner forearms. Using hyperspectral imaging, we assessed chromophore status. In addition, we took chromameter measurements and photographs to assess visible hyperpigmentation. RESULTS: We measured significant changes in chromophore status (P < 0.001 vs baseline), that is of melanin, haemoglobin and oxygen saturation, immediately after blue light irradiation. In addition, we found visible skin colour changes which were expressed by a significant decrease in ITA°values (delta ITA°= À16.89, P < 0.001 vs baseline for the placebo group) and an increase in a* (delta a* = +3.37, P < 0.001 vs baseline for the placebo group) 24 h post-irradiation. Hyperpigmentation and skin reddening were mitigated by both a formulation containing 3% of a microalgal product and a formulation containing 3% niacinamide. CONCLUSION: Our study sets out an efficient and robust protocol for investigating both blue light-induced cutaneous alterations, such as changes in skin chromophores, and signs of photoageing, such as hyperpigmentation. Moreover, we have shown evidence that both an extract of the microalga Scenedesmus rubescens and niacinamide (vitamin B3) have the potential to protect against blue light-induced hyperpigmentation.
The human skin microbiome has recently become a focus for both the dermatological and cosmetic fields. Understanding the skin microbiota, that is the collection of vital microorganisms living on our skin, and how to maintain its delicate balance is an essential step to gain insight into the mechanisms responsible for healthy skin and its appearance. Imbalances in the skin microbiota composition (dysbiosis) are associated with several skin conditions, either pathological such as eczema, acne, allergies or dandruff or non‐pathological such as sensitive skin, irritated skin or dry skin. Therefore, the development of approaches which preserve or restore the natural, individual balance of the microbiota represents a novel target not only for dermatologists but also for skincare applications. This review gives an overview on the current knowledge on the skin microbiome, the currently available sampling and analysis techniques as well as a description of current approaches undertaken in the skincare segment to help restoring and balancing the structure and functionality of the skin microbiota.
Background: Facial wrinkles, pores, and uneven skin tone are major beauty concerns. There is differential manifestation of aging signs in different ethnic groups. In this regard, studies on Black Africans from the African continent are scarce.Objective: To investigate facial wrinkles, pores, and skin tone in Black African women from Mauritius Island and elucidate the differences to Caucasian women from France.Methods: Facial images were taken using the imaging system ColorFace ® . Wrinkles and pores were measured by their length, depth, surface, volume, and number; for skin tone, we measured L*a*b* and calculated ITA, IWA Newtone , and color homogeneity. Results:We found good correlations of wrinkle and pore scores with expert ranking done on ColorFace ® images for Caucasians (Spearman's rho = 0.78 and 0.72) andBlack Africans (Spearman's rho = 0.86 and 0.65). Caucasians showed more advanced facial signs of aging than Black Africans. Exceptions were vertical lines on upper lip and the depth of pores which were greatest for the Black African subjects. Black Africans had higher heterogeneity scores indicative for uneven skin tone. Luminance (L*) was significantly higher in Caucasians but a* and b* values were significantly higher in the Black African subjects. ITA and IWA Newtone were significantly higher for Caucasians. Conclusions:The high correlation between expert ranking and wrinkle and pore measurements prove ColorFace ® a valid imaging system to study skin aging. Our results show that Africans from the African continent show delayed signs of aging compared to Caucasians. Some exceptions suggest that ethnic differences in facial aging are a complex phenomenon. K E Y W O R D Santi-aging, Black African skin, Caucasian skin, ColorFace®, Ethnic, facial imaging, pores, skin tone, wrinkles
Activity and selectivity assessment of new bi-aryl amide 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitors, prepared in a modular manner via Suzuki cross-coupling, are described. Several compounds inhibiting 11β-HSD1 at nanomolar concentrations were identified. Compounds 2b, 3e, 7b and 12e were shown to selectively inhibit 11β-HSD1 over 11β-HSD2, 17β-HSD1 and 17β-HSD2. These inhibitors also potently inhibited 11β-HSD1 activity in intact HEK-293 cells expressing the recombinant enzyme and in intact primary human keratinocytes expressing endogenous 11β-HSD1. Moreover, compounds 2b, 3e and 12e were tested for their activity in human skin biopsies. They were able to prevent, at least in part, both the cortisone- and the UV-mediated decreases in collagen content. Thus, inhibition of 11β-HSD1 by these compounds can be further investigated to delay or prevent UV-mediated skin damage and skin aging.
One of the first lines of cutaneous defense against photoaging is (a) the synthesis of melanin and (b) the initiation of an oxidative stress response to protect skin against the harmful effects of solar radiation. Safe and selective means to stimulate epidermal pigmentation associated with oxidative stress defense are; however, scarce. Activation of the melanocortin-1 receptor (MC1R) on epidermal melanocytes represents a key step in cutaneous pigmentation initiation and, additionally, it regulates cellular defense mechanisms like oxidative stress and DNA-repair. Thus, making the activation of MC1R an attractive strategy for modulating skin pigmentation and oxidative stress. In this context, we designed and synthesized pentapeptides that act as MC1R agonists. These peptides bound, with high potency, to MC1R and activated cAMP synthesis in CHO cells expressing human MC1R. Using one lead pentapeptide, we could show that this activation of MC1R was specific as testing the activation of other G-protein coupled receptors, including the MC-receptor family, was negative. In vitro efficacy on mouse melanoma cells showed similar potency as for the synthetic MC1R agonist alpha-melanocyte stimulating hormone (NDP-alpha-MSH). Moreover, we could reproduce this activity in human skin tissue culture. The lead pentapeptide was able to induce ex-vivo protein expression of key melanogenesis markers melanocyte inducing transcription factor (MITF), tyrosinase (TYR), and tyrosinase-related protein 1 (TYRP-1). Concerning oxidative stress response, we found that the pentapeptide enhanced the activation of Nrf2 after UVA-irradiation. Our results make this pentapeptide an ideal candidate as a skin pigmentation enhancer that mimics alpha-MSH and may also have anti-photoaging effects on the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.