Racial and ethnic discrimination persist in science, technology, engineering and mathematics fields, including ecology, evolution and conservation biology (EECB) and related disciplines. Marginalization and oppression as a result of institutional and structural racism continue to create barriers to inclusion for Black people, Indigenous people and people of colour (BIPOC), and remnants of historic racist policies and pseudoscientific theories continue to plague these fields. Many academic EECB departments seek concrete ways to improve the climate and implement anti-racist policies in their teaching, training and research activities. We present a toolkit of evidence-based interventions for academic EECB departments to foster anti-racism in three areas: in the classroom; within research laboratories; and department wide. To spark restorative discussion and action in these areas, we summarize EECB's racist and ethnocentric histories, as well as current systemic problems that marginalize non-white groups. Finally, we present ways that EECB departments can collectively address shortcomings in equity and inclusion by implementing anti-racism, and provide a positive model for other departments and disciplines.
Aim The Red Sea presents an ideal setting to explore the variability of Symbiodinium over environmental, latitudinal and geographical gradients. We used sequences from two molecular markers to examine genetic diversity of Symbiodinium associated with the widely distributed zoantharian Palythoa tuberculosa in the northern and central Red Sea.Location Northern and central Red Sea.Methods Specimens (n = 329) were collected from 15 locations. Sequence data from nuclear ribosomal ITS2 (n = 269) and chloroplast minicircle psbA ncr (n = 173) were phylogenetically analysed (maximum likelihood, neighbour joining), and Symbiodinium types identified for each P. tuberculosa colony. To establish whether environment was a strong predictor of Symbiodinium psbA ncr lineage, SST, chlorophyll-a, salinity, and depth data were fit into a multinomial logistic regression using the package VGAM in the R statistical environment.Results Based on ITS2 and psbA ncr results, P. tuberculosa colonies were shown to be in symbioses with Symbiodinium clade C (n = 172) and clade D (n = 1). Within clade C, four psbA ncr lineages were observed; closely related lineages designated Pt-1-a and Pt-1-b, and closely related lineages Pt-3-a and Pt-3-b. By location, Pt-1-a dominated the sites within the Gulf of Aqaba (c. 86%, 37/43 colonies). At the entrance to the Gulf of Aqaba, Pt-3-a dominated (c. 88%, 15/ 17), while the more southern remaining sites in the Red Sea were dominated by Pt-3-b (c. 78%, 89/113).Main conclusions Multinomial logistic regression analyses established that predictions based on the combination of temperature, chlorophyll-a and salinity accurately reflected symbiont distributions in the central and northern Red Sea. Palythoa tuberculosa host Pt-1-a in the coldest region, the Gulf of Aqaba (annual average SST = 24.5-25.0°C), while immediately to the south Pt-3-a dominates (SST = 26.0-26.5°C), with warmest southern sites dominated by Pt-3-b (SST > 26.5°C). The Gulf of Aqaba is a unique environment, and more research on Symbiodinium outside the Gulf is required to understand symbiont diversity patterns within the Red Sea.
Recent coral spawning observations in the central Red Sea show that most scleractinian species release their gametes in the spring,
Aim The mutualistic relationship between anemones and anemonefishes is one of the most iconic examples of symbiosis. However, while anemonefishes have been extensively studied in terms of genetic connectivity, such information is lacking entirely for host sea anemones. Here, we provide the first information on the broad‐scale population structure and phylogeographical patterns of three species of host sea anemone, Heteractis magnifica, Stichodactyla mertensii and Entacmaea quadricolor. We evaluate if there is concordance in genetic structure across several distinct biogeographical areas within the Indo‐Pacific region and to what extent the observed patterns may concur with those found for anemonefishes. Location Indo‐Pacific, including the Red Sea. Taxon Heteractis magnifica, S. mertensii and E. quadricolor Methods Microsatellite markers and a combination of statistical methods including Bayesian clustering, isolation by distance (IBD), analysis of molecular variance (AMOVA) and principal components analysis (PCA) were used to determine population structure. The congruence among distance matrices (CADM) method was used to assess similarity in spatial genetic patterns among species. Results Significant population structure was identified in the three host anemone species. Each species is likely composed of at least two genetic clusters corresponding to two biogeographical regions, the Red Sea and the rest of the Indo‐Pacific. Two of the three anemone species seem to be experiencing admixture where the two main clusters overlap (the Maldives). IBD analyses in the Red Sea revealed differences in gene flow among species, suggesting more limited dispersal potential for E. quadricolor than for S. mertensii and H. magnifica. Clonality is documented in S. mertensii for the first time. Main conclusions This research documents the genetic population structure for three ecologically important host sea anemones across the Indo‐Pacific and provides valuable insights regarding their biogeography and evolution. Specifically, we found high levels of genetic divergence between populations across different biogeographical regions, suggesting different evolutionary lineages within species. At the same time, common geographical overlap of population structures suggests similar evolutionary histories among all three species. Interestingly, the observed patterns are congruent to some extent with structure reported for several anemonefish species, reflecting their close ecological association.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.