Mucopolysaccharidosis type VII (MPS7) is a lysosomal storage disorder (LSD) resulting from mutations in the β-glucuronidase gene, leading to multiorgan dysfunction and fetal demise. While postnatal enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation have resulted in some phenotypic improvements, prenatal treatment might take advantage of a unique developmental window to penetrate the blood-brain barrier or induce tolerance to the missing protein, addressing two important shortcomings of postnatal therapy for multiple LSDs. We performed in utero ERT (IUERT) at E14.5 in MPS7 mice and improved survival of affected mice to birth. IUERT penetrated brain microglia, whereas postnatal administration did not, and neurological testing (after IUERT plus postnatal administration) showed decreased microglial inflammation and improved grip strength in treated mice. IUERT prevented antienzyme antibody development even after multiple repeated postnatal challenges. To test a more durable treatment strategy, we performed in utero hematopoietic stem cell transplantation (IUHCT) using congenic CX3C chemokine receptor 1–green fluorescent protein (CX3CR1-GFP) mice as donors, such that donor-derived microglia are identified by GFP expression. In wild-type recipients, hematopoietic chimerism resulted in microglial engraftment throughout the brain without irradiation or conditioning; the transcriptomes of donor and host microglia were similar. IUHCT in MPS7 mice enabled cross-correction of liver Kupffer cells and improved phenotype in multiple tissues. Engrafted microglia were seen in chimeric mice, with decreased inflammation near donor microglia. These results suggest that fetal therapy with IUERT and/or IUHCT could overcome the shortcomings of current treatment strategies to improve phenotype in MPS7 and other LSDs.
SummaryReasons for performing study: Early, accurate diagnosis of ascending placentitis in mares remains a key challenge for successful treatment of the disease. Doppler ultrasonography has shown promise as a tool to diagnose pregnancy abnormalities and is becoming more available to equine clinicians. However, to date, no studies have prospectively compared this technique to standard B-mode measurement of the combined thickness of the uterus and placenta (CTUP). Objectives:The objective of the current study was to compare Doppler and B-mode ultrasonography for the detection of experimentally-induced ascending placentitis in mares. Methods: Eleven healthy pony mares in late gestation were used in this study. Placentitis was induced in 6 mares between Days 280 and 295, while 5 mares served as negative controls. All mares were intensively monitored until delivery. Fetal heart rate, CTUP, uterine artery blood flow (resistance index, pulsatility index, arterial diameter and total arterial blood flow) and physical examination findings were recorded at each examination. Mares with an increased CTUP above published values were treated in accordance with published recommendations. Foals and fetal membranes were examined at birth. Ultrasonographic parameters were compared between groups using ANOVA. Foal viability and histological presence of placentitis were compared using a Fisher's exact test. Results: The CTUP was increased above normal in 5 of 6 inoculated mares within 3 days after inoculation (P = 0.05). The sixth inoculated mare was excluded from subsequent data analysis. Uterine artery blood flow, physical examination findings and fetal heart rate were not different between groups. Gradual increases in CTUP, arterial diameter and total arterial blood flow were detected with increasing gestational age in the control mares (P = 0.02, P = 0.00001 and P = 0.00001, respectively). Conclusion: The CTUP, but not uterine blood flow, was different between groups (P = 0.00001). Recorded CTUP values for control pony mares were similar to previously published values for light breed horses.
SignificanceWe show that mutations in HMGA2 affect fetal resource allocation, testis descent, and the size of pigs and provides a target for gene modification that can be used to modulate size in other mammalian species. This can have implications in agriculture as well as in the development of new strains of companion animals. In addition, most xenograft pig donors have adult organs larger than those of humans. Recently, it has been shown that regulation of organ growth is donor-controlled, not host-controlled, resulting in organ overgrowth and damage after transplantation. We show here that the HMGA2 gene is a potential target for organ-size regulation in xenotransplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.