One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in
vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect.
Naturally occurring antioxidants are extensively studied for their capacity to protect organisms and cells from damage induced by oxygen reactive species. In fact, oxidative stress is considered a cause of aging, degenerative disease and cancer. We have focused our attention on two agents, ascorbic acid and beta-carotene, commonly considered to be antioxidants, but whose protective activity against cancer is insufficiently known. This paper reports on the ability of these agents to act against damage induced by H2O2 and bleomycin, in Chinese hamster ovary cells cultivated in vitro. Cytogenetic and cytofluorimetric analyses were performed. Both vitamins proved effective in reducing H2O2-induced sister chromatid exchanges, but increased H2O2- and bleomycin-induced chromosomal aberrations. Cytofluorimetric data, in contrast, showed that ascorbic acid and beta-carotene act as scavengers of endogeneous and H2O2-induced oxygen species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.