The transactivation of TCF target genes induced by Wnt pathway mutations constitutes the primary transforming event in colorectal cancer (CRC). We show that disruption of beta-catenin/TCF-4 activity in CRC cells induces a rapid G1 arrest and blocks a genetic program that is physiologically active in the proliferative compartment of colon crypts. Coincidently, an intestinal differentiation program is induced. The TCF-4 target gene c-MYC plays a central role in this switch by direct repression of the p21(CIP1/WAF1) promoter. Following disruption of beta-catenin/TCF-4 activity, the decreased expression of c-MYC releases p21(CIP1/WAF1) transcription, which in turn mediates G1 arrest and differentiation. Thus, the beta-catenin/TCF-4 complex constitutes the master switch that controls proliferation versus differentiation in healthy and malignant intestinal epithelial cells.
RNAi Double-stranded RNAs (dsRNAs) were made using gld-2 cDNAs (pJK830, exons 2-8 or pJK831, exons 16-18) as templates. Young adults were either injected with 2 mg ml 21 gld-2 dsRNA or soaked in 10 ml of 2 mg ml 21 gld-2 dsRNA for 12 h at 20 8C or mock-treated by injection with M9 buffer. Embryos were collected at defined intervals after treatment and processed together.
Poly(A) polymerase assayProteins were in vitro translated using the TNT coupled transcription-translation system (Promega), and assayed using buffer conditions essentially as described 26 . For scintillation counting, poly(A) (Roche) was used as substrate. For gel assays, we used RNA oligo, C 35 A 10 (Dharmacon), a 45-nucleotide and supplemental 1 mM MgCl 2 . Products were analysed on 12% sequencing gels.
The Forkhead transcription factors AFX, FKHR and FKHR-L1 are orthologues of DAF-16, a Forkhead factor that regulates longevity in Caenorhabditis elegans. Here we show that overexpression of these Forkhead transcription factors causes growth suppression in a variety of cell lines, including a Ras-transformed cell line and a cell line lacking the tumour suppressor PTEN. Expression of AFX blocks cell-cycle progression at phase G1, independent of functional retinoblastoma protein (pRb) but dependent on the cell-cycle inhibitor p27kip1. Indeed, AFX transcriptionally activates p27kip1, resulting in increased protein levels. We conclude that AFX-like proteins are involved in cell-cycle regulation and that inactivation of these proteins is an important step in oncogenic transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.