In this paper, we use a tensor model based on the Higher-Order Singular Value Decomposition (HOSVD) to discover semantic directions in Generative Adversarial Networks. This is achieved by first embedding a structured facial expression database into the latent space using the e4e encoder. Specifically, we discover directions in latent space corresponding to the six prototypical emotions: anger, disgust, fear, happiness, sadness, and surprise, as well as a direction for yaw rotation. These latent space directions are employed to change the expression or yaw rotation of real face images. We compare our found directions to similar directions found by two other methods. The results show that the visual quality of the resultant edits are on par with State-of-the-Art. It can also be concluded that the tensorbased model is well suited for emotion and yaw editing, i.e., that the emotion or yaw rotation of a novel face image can be robustly changed without a significant effect on identity or other attributes in the images.
Automatic language identification is a challenging problem. Discriminating between closely related languages is especially difficult. This paper presents a machine learning approach for automatic language identification for the Nordic languages, which often suffer miscategorisation by existing state-of-the-art tools. Concretely we will focus on discrimination between six Nordic languages: Danish, Swedish, Norwegian (Nynorsk), Norwegian (Bokmål), Faroese and Icelandic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.