Recently we introduced atmospheric pressure laser ionization (APLI) as a complementary ionization method for coupling LC-MS systems (HPLC and CEC), allowing ionization of nonpolar aromatic compounds via near-resonant two-photon excitation. In this paper, we demonstrate that APLI with the same source enclosure as for LC coupling is also suited for hyphenation of GC with atmospheric-pressure ionization mass spectrometry. This technique permits the qualitative and quantitative determination of aromatic compounds in an ultralow concentration range, as we show here with polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, and hetero-PAHs as examples. The outstanding sensitivity is demonstrated for chrysene, with a detection limit of 22 amol. Polar functional groups reduce the sensitivity, but after methylation or silylation, the analytes can also be determined very sensitively in complex matrixes, as is shown with 1-hydroxypyrene in urine.
High resolution TOF-MS and LC-MS/MS show equivalent quantitative performance for monitoring of cyclosporin A, tacrolimus, sirolimus and everolimus. HRMS has the potential to replace conventional LC-MS/MS in clinical laboratories because it simplifies assay development (no optimization of fragmentations and product ions necessary) and its full-scan data can provide additional information.
Die quantitative Analyse von kleinen Molekülen und Polymeren mit Atmosphärendruck‐Laserionisation und Flugzeitmassenspektrometrie wird durch eine Derivatisierungsstrategie realisiert, die eine selektive Ionisation von polaren und unpolaren Substanzen in komplexer Matrix ohne Stabilisotopen‐markierte Standards ermöglicht.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.