Neutrophils release neutrophil extracellular traps (NETs) in a pathogen-killing process called NETosis. Excessive NETs formation, however, is implicated in disease pathogenesis. Therefore, to understand how NETosis is regulated, we examined the effect of dexamethasone (DXM), an anti-inflammatory drug, on this process and the role of toll-like receptors (TLRs). We stimulated human neutrophils with phorbol 12-myristate 13-acetate (PMA) or Staphylococcus aureus (S. aureus) and quantified NETs formation. We also examined the effect of DXM on the bactericidal effect of NETs and the role of reactive oxygen species (ROS) and nuclear factor (NF)-κB in DXM-regulated NETosis. DXM significantly inhibited S. aureus-induced NETosis and extracellular bacterial killing. ROS production and NF-κB activation were not involved in DXM-regulated NETosis. TLR2 and TLR4, but not TLR5 or TLR6, modified S. aureus-induced NETs formation. Neither DXM nor TLRs were involved in PMA-induced NETosis. Furthermore, TLR2 and TLR4 agonists rescued DXM-inhibited NETosis, and neither TLR2 nor TLR4 antagonists could further inhibit NETosis reduction induced by DXM, indicating that DXM may inhibit NETosis by regulating TLR2 and TLR4. In conclusion, the mechanisms of S. aureus- and PMA-induced NETosis are different. DXM decreases NETs formation independently of oxidant production and NF-κB phosphorylation and possibly via a TLR-dependent mechanism.
Catalytic oxidative cross-dehydrogenative coupling between unactivated C(sp)-H and C(sp)-H bonds is achieved by the cobalt-catalyzed o-alkylation reaction of aromatic carboxamides containing (pyridin-2-yl)isopropyl amine (PIP-NH) as a N,N-bidentate directing group. Many different C(sp)-H bonds in alkanes, toluene derivatives and even in the α-position of ethers and thioethers can be used as coupling partners. This method has a broad substrate scope and the tolerance of various functional groups.
The first cobalt-catalyzed direct methylation of a C(sp(2) )-H bond using dicumyl peroxide (DCP) as both the methylating reagent and hydrogen acceptor has been established. The reaction proceeded without the use of any additives, and was proven to be applicable to various amides bearing a 2-pyridinylisopropyl (PIP) directing group, providing an efficient access to o-methyl aryl amides with high functional-group tolerance. Preliminary mechanistic studies suggest a radical process would be involved in the catalytic process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.