Background:The pathogenesis of connective tissue disease-associated interstitial lung disease (CTD-ILD) is unclear. This study aims to identify differentially expressed proteins (DEPs) in CTD-ILD to determine the potential role of these DEPs that may play in the pathogenesis of CTD-ILD and to offer potential therapeutic targets.Methods: Bronchoalveolar lavage fluid (BALF) samples were collected from four patients with CTD-ILD and four patients without CTD-ILD. Label-free mass spectrometrybased relative quantification was used to identify the DEPs. Bioinformatics were used to determine the potential biological processes and signaling pathways associated with these DEPs.
Background Chronic obstructive pulmonary disease (COPD) is one of the world’s leading causes of death and a major chronic disease, highly prevalent in the aging population exposed to tobacco smoke and airborne pollutants, which calls for early and useful biomolecular predictors. Roles of noncoding RNAs in COPD have been proposed, however, not many studies have systematically investigated the crosstalk among various transcripts in this context. The construction of RNA functional networks such as lncRNA-mRNA, and circRNA-miRNA-mRNA interaction networks could therefore facilitate our understanding of RNA interactions in COPD. Here, we identified the expression of RNA transcripts in RNA sequencing from COPD patients, and the potential RNA networks were further constructed. Methods All fresh peripheral blood samples of three patients with COPD and three non-COPD patients were collected and examined for mRNA, miRNA, lncRNA, and circRNA expression followed by qRT-PCR validation. We also examined mRNA expression to enrich relevant biological pathways. lncRNA-mRNA coexpression network and circRNA-miRNA-mRNA network in COPD were constructed. Results In this study, we have comprehensively identified and analyzed the differentially expressed mRNAs, lncRNAs, miRNAs, and circRNAs in peripheral blood of COPD patients with high-throughput RNA sequencing. 282 mRNAs, 146 lncRNAs, 85 miRNAs, and 81 circRNAs were differentially expressed. GSEA analysis showed that these differentially expressed RNAs correlate with several critical biological processes such as “ncRNA metabolic process”, “ncRNA processing”, “ribosome biogenesis”, “rRNAs metabolic process”, “tRNA metabolic process” and “tRNA processing”, which might be participating in the progression of COPD. RT-qPCR with more clinical COPD samples was used for the validation of some differentially expressed RNAs, and the results were in high accordance with the RNA sequencing. Given the putative regulatory function of lncRNAs and circRNAs, we have constructed the co-expression network between lncRNA and mRNA. To demonstrate the potential interactions between circRNAs and miRNAs, we have also constructed a competing endogenous RNA (ceRNA) network of differential expression circRNA-miRNA-mRNA in COPD. Conclusions In this study, we have identified and analyzed the differentially expressed mRNAs, lncRNAs, miRNAs, and circRNAs, providing a systematic view of the differentially expressed RNA in the context of COPD. We have also constructed the lncRNA-mRNA co-expression network, and for the first time constructed the circRNA-miRNA-mRNA in COPD. This study reveals the RNA involvement and potential regulatory roles in COPD, and further uncovers the interactions among those RNAs, which will assist the pathological investigations of COPD and shed light on therapeutic targets exploration for COPD.
Natural killer (NK) cells are regarded as the host's first line of defense against viral infection. Moreover, the involvement of NK cells in chronic obstructive pulmonary disease (COPD) has been documented. However, the specific mechanism and biological changes of NK cells in COPD development have not been determined. In this study, we extracted NK cells from the peripheral blood of 18 COPD patients who were recovering from an acute exacerbation and 45 healthy donors (HDs), then we labeled NK cells with different antibodies and analyzed with flow cytometry. The data showed that the frequencies of total NK cells in the peripheral blood of COPD patients were lower compared with HDs. Moreover, the inhibitory receptors on NK cells expressed higher levels and the expression of activating receptors were generally low. Importantly, both the expression levels of CD96 in NK cells and the frequencies of CD96 + NK cells were significantly upregulated in COPD patients. These findings suggest that surface receptor CD96 from NK cells may be a risk factor in the evolution of COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.