To balance ecological protection and urban development, a land use simulation model that couples an ecological network (EN) and multiple scenarios was developed based on the PLUS model. The simulation of land use in the Qiantang River Basin in 2030 successfully demonstrates the usefulness of the EN-PLUS model. In this model, conventional ecological constraints (nature reserves and water areas) and three different EN levels were taken as restricted conversion areas during the simulation. Then, four ecological constraints were coupled with four simulation scenarios: business as usual (BAU), rapid urban development (RUD), ecological protection (EP), and urban- and ecology-balanced (UEB). Information from the analysis of model simulation results can be used to reduce the potential damage to a range of land cover types. However, this protective effect is not obvious under the RUD scenario due to the impact of significant human disturbance. Furthermore, although EP is the scenario with the least ecological damage at the whole watershed scale, this is not the case for all subbasins. This indicates the existence of a landscape scale effect. Therefore, the best development scenario should be selected by comprehensively weighing the scale effect and the ecological characteristics of each subbasin.
Forest walking is a popular, healthy, and light outdoor activity. The potential comprehensive relationships between the vertical structures, thermal comfort, negative air ions (NAI), and human physiological stress in forest walking spaces have not been determined. We performed an experiment in the Baishuihe National Nature Reserve, Sichuan Province, China. Thirty-two college students recruited as subjects completed a forest walk (approximately one kilometer) on the same trail divided into three vertical structure type subsections, namely: A (dense herb and shrub layers with a sparse tree layer), B (dense tree, herb and shrub layers), and C (dense tree and herb layers with a sparse shrub layer). When the subjects passed preset environmental measurement points, staff measured climatic indexes (air temperature, relative humidity, wind velocity, surface temperature and global radiation) and NAI levels, and these data were input into the Rayman model to form a comprehensive thermal comfort index, the physiologically equivalent temperature (PET). PET and NAI differences and dynamic data among the subsections were analyzed. The subjects’ brain waves, heart rates (HRs), and walking speed (S) were digitally recorded. We selected brain wave θ, γ and β-high/α rates, neuroemotional indexes (stress and relaxation) and HR as physiological indicators, and S as an auxiliary indicator. The correlations between PET and NAI with physiological and auxiliary indexes were analyzed. Forest type C showed the lowest PETs and highest NAIs along with the most stable dynamic changes. PET was negatively correlated with HR and positively correlated with γ (12 channels). NAI was positively correlated with S and relaxation and negatively correlated with γ (two channels) and the β-high/α ratio (five channels). These comprehensive relationships suggest that dense tree, sparse shrub, and high-coverage herb layers combined with optimal temporal conditions (before noon or after a light rain) form the best thermal comfort and NAI conditions conducive to reducing human physiological pressures during summer daytime forest walking. These results provide theoretical references for forest walking and spatial regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.