Copper fungicide use is limited by the European regulation; therefore, new strategies have been developed to prevent grapevine downy mildew (GDM). However, there is poor information about their effects on grape amino acid composition. This field trial aimed to evaluate the effect on grape amino acid composition of chitosan and of a mixture of laminarin and Saccharomyces extracts (LamE), applied in different strategies with copper hydroxide. The results showed that all the treatments applied to grapevines decreased the concentration of several amino acids. Moreover, treatments that have mostly decreased these compounds are those with copper hydroxide, especially when applied individually. LamE applied individually or alternately with copper hydroxide had the least negative effect on grape amino acid content. These results provide further information about the negative effects of copper on grape quality, which can be reduced when it is used in strategy with LamE or chitosan in GDM control.
Grapevine downy mildew (GDM) is one of the most serious diseases of grapevines. Limitations for the use of copper-based products in organic agriculture according to EU Regulation EU/2002/473 and the later EU Commission Implementing Regulation 2018/1981 has promoted a search for alternatives. This 5-year field trial evaluated the effectiveness against GDM of several strategies using different chitosan-based formulations and application rates in comparison with other natural compounds, with these applied individually or with copper hydroxide. Trials were run in commercial vineyards, with different environmental conditions and grapevine cultivars. For the natural compounds applied as individual treatments, a 0.5%/0.8% chitosan formulation provided the best protection against GDM, with the other compounds and formulations less effective. When copper hydroxide use was halved by combination with these natural compounds according to three different strategies, GDM incidence, severity and McKinney Index were reduced, in particular for copper hydroxide applied in combinations with the 0.5%/0.8% chitosan formulation, rather than with a mixture of laminarin and Saccharomyces spp. extract. The 0.5%/0.8% chitosan formulation alone and with copper hydroxide provided good protection against GDM for both high-pressure and low-pressure disease seasons. Chitosan thus represents a good alternative to copper formulations for control of GDM for both organic and integrated disease management.
Esca disease is one of the most important grapevine trunk diseases. It seriously reduces the quality and quantity of grapevine production, and results in a shorter vineyard lifespan. Previous studies have suggested that wide xylem vessel diameter favours development on grapevine of Phaeomoniella chlamydospora, one of the fungi involved in esca, thus affecting disease susceptibility. In this study, cultivars mainly originated from European countries, 27 white-berried and 24 red-berried grapevine cultivars, were grown in the same experimental vineyard and were analysed for xylem vessel sizes (as diameter and frequency) for correlation with esca incidence. In this study, the cultivars showed significant differences in the xylem vessel parameters. However, no relationship was detected between vessel size and esca incidence in the field. Overall, white-berried cultivars showed wider vessel diameters than red-berried cultivars. The relationship between xylem vessel size in the red-berried and white-berried cultivars and incidence of esca symptoms is discussed. We suggest that vessel anatomy profiles can provide useful information for further investigations on grapevine genotype structure–esca incidence relationships.
In this work we analyzed the relationship among native arbuscular mycorrhizal fungi (AMF) and vine roots affected by esca, a serious grapevine trunk disease. The AMF symbiosis was analyzed on the roots of neighboring plants (symptomatic and asymptomatic to esca) in 14 sites of three vineyards in Marche region (central–eastern Italy). The AMF colonization intensity, identified by non-vital staining, showed higher value in all esca symptomatic plants (ranging from 24.6% to 61.3%) than neighboring asymptomatic plants (from 17.4% to 57.6%). The same trend of Glomeromycota phylum abundance was detected by analyzing fungal operational taxonomic units (OTUs) linked to the AMF community, obtained by amplicon high throughput analysis of ITS 1 region. Overall, the highest amount of OTUs was detected on roots from symptomatic plants (0.42%), compared to asymptomatic roots (0.29%). Specific primer pairs for native Rhizophagus irregularis and Funneliformis mosseae AMF species, were designed in 28S rRNA and large subunit (LSU) ribosomal RNA, respectively, and droplet digital PCR protocol for absolute quantification was set up. A higher number of DNA copies of both fungal species were detected more frequently in symptomatic than asymptomatic vines. Our study suggests a relationship between esca and native AMF in grapevine. These results underline the importance of native rhizosphere microbial communities for a better knowledge of grapevine esca disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.