Contemporaneous presence of both oxidized and reduced forms of electron carriers is mandatory in efficient flux by plant electron transport cascades. This requirement is considered as redox poising that involves the movement of electron from multiple sites in respiratory and photosynthetic electron transport chains to molecular oxygen. This flux triggers the formation of superoxide, consequently give rise to other reactive oxygen species (ROS) under adverse environmental conditions like drought, high, or low temperature, heavy metal stress etc.. . that plants owing during their life span. Plant cells synthesize ascorbate, an additional hydrophilic redox buffer, which protect the plants against oxidative challenge. Large pools of antioxidants also preside over the redox homeostasis. Besides, tocopherol is a liposoluble redox buffer, which efficiently scavenges the ROS like singlet oxygen. In addition, proteinaceous thiol members such as thioredoxin, peroxiredoxin, and glutaredoxin, electron carriers and energy metabolism mediators phosphorylated (NADP) and non-phosphorylated (NAD +) coenzyme forms interact with ROS, metabolize and maintain redox homeostasis.
High concentration of apolipoprotein B (apoB) is a risk factor for coronary artery disease (CAD). The association of the APOB gene polymorphism c.12669G>A, p.Gln4154Lys with the risk of CAD varies considerably in different populations. The present study represents the first investigation regarding the role of this APOB gene polymorphism with CAD in the Indian Punjabi population. We have studied the APOB gene polymorphism c.12669G>A, p.Gln4154Lys and its relationship with lipid, apoB, low-density lipoprotein (LDL) heterogeneity and oxidation in subjects suffering from CAD. The study was conducted on 87 patients with CAD; 75 healthy subjects served as controls. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the DNA polymorphism in the APOB gene. Frequency of R− (mutant) allele was significantly high (p <0.05) in CAD patients when compared to controls. Variations in serum lipid levels in the R+R+ and R+R− APOB genotypes were insignificant (p >0.05). However, serum apoB levels were significantly raised (p <0.05) in CAD patients with the R+R− genotype as compared to those with the R+R+ APOB genotype. Coronary artery disease patients had raised significantly raised (p <0.01) Log triglyceride/high density lipoprotein-cholesterol (HDL-C) ratio, apoB carbonyl content and increased malondialdehyde-low density lipoprotein (MDA-LDL levels, irrespective of APOB genotype as compared to controls. Carriers of the R− allele are at higher risk of CAD, probably because of elevated serum apoB levels in the Indian Punjabi population. Overall, it may be concluded that the R− allele might be associated with increased susceptibility towards CAD development in the Indian Punjabi population, and one of the linking factor is the elevation in serum apoB levels. However, this association needs further evaluation in a larger population. Secondly, the robust mechanism behind the positive association of the R− allele with raised serum apoB levels needs to be explored, which might be helpful in the strengthening the observed results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.