Community (QLG2-CT-1999-00988) (to FM), CAICYT of Spanish Ministerio de Ciencia y Tecnología (SAF99-0025) (to FM), and Fondo de Investigaciones Sanitarias (FIS 00/0244) (to IdC).
Duane retraction syndrome (DRS) is a congenital eye-movement disorder characterized by a failure of cranial nerve VI (the abducens nerve) to develop normally, resulting in restriction or absence of abduction, restricted adduction, and narrowing of the palpebral fissure and retraction of the globe on attempted adduction. DRS has a prevalence of approximately 0.1% in the general population and accounts for 5% of all strabismus cases. Undiagnosed DRS in children can lead to amblyopia, a permanent uncorrectable loss of vision. A large family with autosomal dominant DRS was examined and tested for genetic linkage. After exclusion of candidate regions previously associated with DRS, a genomewide search with highly polymorphic microsatellite markers was performed, and significant evidence for linkage was obtained at chromosome 2q31 (D2S2314 maximum LOD score 11.73 at maximum recombination fraction. 0). Haplotype analysis places the affected gene in a 17.8-cM region between the markers D2S2330 and D2S364. No recombinants were seen with markers between these two loci. The linked region contains the homeobox D gene cluster. Three of the genes within this cluster, known to participate in hindbrain development, were sequenced in affected and control individuals. Coding sequences for these genes were normal or had genetic alterations unlikely to be responsible for the DRS phenotype. Identifying the gene responsible for DRS may lead to an improved understanding of early cranial-nerve development.
The RNA-binding protein AUF1 binds AU-rich elements in 3′-untranslated regions to regulate mRNA degradation and/or translation. Many of these mRNAs are predicted microRNA targets as well. An emerging theme in post-transcriptional control of gene expression is that RNA-binding proteins and microRNAs co-regulate mRNAs. Recent experiments and bioinformatic analyses suggest this type of co-regulation may be widespread across the transcriptome. Here, we identified mRNA targets of AUF1 from a complex pool of cellular mRNAs and examined a subset of these mRNAs to explore the links between RNA binding and mRNA degradation for both AUF1 and Argonaute 2 (AGO2), which is an essential effector of microRNA-induced gene silencing. Depending on the specific mRNA examined, AUF1 and AGO2 binding is proportional/cooperative, reciprocal/competitive or independent. For most mRNAs in which AUF1 affects their decay rates, mRNA degradation requires AGO2. Thus, AUF1 and AGO2 present mRNA-specific allosteric binding relationships for co-regulation of mRNA degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.