Copper(II) oxide (CuO) in powder form was evaporated thermally on the front surface of an n-Si (1 0 0) single crystal using a vacuum coating unit. Structural investigation of the deposited CuO film was made using X-ray difraction (XRD) and energy dispersive X-ray analysis (EDX) techniques. It was determined from the obtained results that the copper oxide films exhibited single-phase CuO properties in a monoclinic crystal structure. Transmittance measurement of the CuO film was performed by a UV-Vis spectrophotometer. Band gap energy of the film was determined as 1.74 eV under indirect band gap assumption. Current-voltage (I-V) measurements of the CuO/n-Si heterojunctions were performed under illumination and in the dark to reveal the photovoltaic and electrical properties of the produced samples. From the I-V measurements, it was revealed that the CuO/n-Si heterojunctions produced by thermal evaporation exibit excellent rectifying properties in dark and photovoltaic properties under illumination. Conversion efficiencies of the CuO/n-Si solar cells are comparable to those of CuO/n-Si produced by other methods described in the literature.
In this study, CuO/n-Si/Al heterojunction contacts were fabricated by thermal evaporation technique. Electrical characteristics of the samples were investigated with the current-voltage (I-V), capacitance-voltage/frequency (C-V/f), and conductance-voltage (G/V) measurements at room temperature. Also, Cu/n-Si/Al Schottky contact was produced as a reference sample to investigate the electrical properties of the samples. The values of ideality factor (n), barrier height (Φb) and series resistance (Rs) of the samples were calculated from the forward bias current-voltage (I-V) and reverse bias capacitance-voltage (C-V) characteristics. Also, for checking the consistency of the results, Cheung and Norde functions were used. The experimental result values of CuO/n-Si contact were compared with the values of the reference Cu/n-Si Schottky diode. It was observed that the values of the ideality factor and barrier height of the CuO/n-Si heterojunction were higher than those of the Cu/n-Si Schottky contact, while the series resistance was lower. Also, it has been observed that the value of capacitance decreased with increasing frequency and after a certain value of frequency it was almost constant. The ideality factor of CuO/n-Si/Al heterostructure is about 2.40 and so, it is not close to the ideal behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.