Gummy stem blight (GSB) is a major disease of cucurbits worldwide. It is caused by three fungal species that are morphologically identical and have overlapping geographic and host ranges. Controlling GSB is challenging due to the lack of resistant cultivars and the pathogens' significant ability to develop resistance to systemic fungicides. The causal agent of GSB is recognized as a complex of three phylogenetically distinct species belonging to domain Eukaryota, kingdom Fungi, phylum Ascomycota, subphylum Pezizomycotina, class Dothideomycetes, subclass Pleosporomycetida, order Pleosporales, family Didymellaceae, genus Stagonosporopsis, species cucurbitacearum, citrulli, and caricae. Pycnidia are tan with dark rings of cells around the ostiole measuring 120-180 μm in diameter. Conidia are 6-13 μm long, hyaline, cylindrical with round ends, and non-or monoseptate.Pseudothecia are black and globose in shape and have a diameter of 125-213 μm.Ascospores are 14-18 × 4-6 μm long, hyaline, ellipsoidal with round ends, and monoseptate with a distinct constriction at the septum. Eight ascospores are found per ascus. The upper end of the apical cell is pointed, whereas the lower end of the bottom cell is blunt. Species-specific PCR primers that can be used in a multiplex conventional PCR assay are available. The GSB species complex is pathogenic to 37 species of cucurbits from 21 different genera. S. cucurbitacearum and S. citrulli are specific to cucurbits, while S. caricae is also pathogenic to papaya and babaco-mirim (Vasconcellea monoica), a related fruit. Under favourable environmental conditions, symptoms can appear 3-12 days after spore germination. Leaf spots often start at the leaf margin or extend to the margins. Spots expand and coalesce, resulting in leaf blighting. Active lesions are typically water-soaked. Cankers are observed on crowns, main stems, and vines. Red to amber gummy exudates are often seen on the stems after cankers develop on cortical tissue.
In a 2-year (2008 to 2009) wide-scale survey of viruses infecting cucurbits, a limited number of greenhouse-grown cucumber (Cucumis sativus) plants showed vein-yellowing symptoms. Greenhouses were infested with whiteflies and infection with Cucumber vein yellowing virus (CVYV) was suspected. CVYV is widely distributed in southern Europe in both open field and protected cucurbit crops (2). Total RNA was extracted from seven plants with vein yellowing symptoms using TRI Reagent (Sigma-Aldrich, St Louis, MO). RT-PCR tests using CVYV-specific primers (CV+/CV–) targeting the coat protein of CVYV (2) gave amplicons of the expected size from seven plants. The sequence of one representative isolate, CVYV-LB3 (GenBank Accession No. JF289167), showed 97, 95.6, and 95.2% pairwise nucleotide identity with isolates from Tunisia (EF538680), Israel (AF233429), and Jordan (JF460793), respectively. In 2012, CVYV like symptoms were not observed in greenhouses in the same areas. In early spring 2013, a total of 16 leaf samples with vein-yellowing symptoms were collected from the northern coastal areas (Jbeil, Amshit, Tabarja) and 11 samples showing only yellowing on older leaves from the southern coast (Jiyeh). CVYV was detected in all samples from the northern coast and in four samples from the southern coast. Four isolates from the North and two from the South were sequenced (KC990497 to KC990502) and showed high sequence variation. The pairwise nucleotide and amino acid identities between these isolates ranged from 95.1 to 100% and 98.5 to 100%, respectively. Pairwise nucleotide and amino acid identities of the isolates with CVYV-LB3 showed variable homology between 93.7 to 98.2% and 94.6 to 96.6%, respectively. The inter-population structure of CVYV in Lebanon showed high variability as compared to the homogenous Spanish population (4). For transmission tests, non-viruliferous whiteflies (Bemisia tabaci) were exposed for an 18-h acquisition access period on vein-yellowed leaves followed by a 24-h inoculation access period to healthy cucumber plants (5-leaf stage). In addition, leaves with vein-yellowing symptoms were ground in 0.1 M phosphate buffer (pH 7.0) and sap-inoculated on carborundum-dusted cucumber (cv. Delta) and squash (Cucurbita pepo cv. FarajF1) plants. Vein yellowing symptoms developed 9 to 11 days post-inoculation on all whitefly inoculated plants, while symptoms were delayed till 3 weeks post inoculation on seven out of eight sap-inoculated plants. All symptomatic plants were positive for CVYV by RT-PCR. Furthermore, surveyed plants were also tested for Cucurbit chlorotic yellows virus (CCYV) and Cucurbit yellow stunting disorder virus (CYSDV), two criniviruses reported previously in Lebanon, by RT-PCR (1). Double or triple infection of CCYV and CYSDV occurred in 18 out of 20 of the CVYV-infected plants. During the past 5 years, a limited number of cucumber plants showed CVYV symptoms. This indicates that CVYV occurrence is sporadic. However, its occurrence in mixed infection with criniviruses may have damaging economic implications to cucurbit production (3). To our knowledge, this is the first report of CVYV on cucurbits in Lebanon and its occurrence in co-infection with CCYV. References: (1) P. E. Abrahamian et al. Plant Dis. 96: 1704, 2012. (2) I. M. Cuadrado et al. Plant Dis. 85:336, 2001. (3) F. M. Gil-Salas et al. Plant Pathol. 61:468, 2011. (4) D. Janssen et al. Virus Genes 34:367, 2007.
Gummy stem blight is a destructive fungal disease that affects all commonly cultivated cucurbit crops. One cultivar each of the five cucurbit species susceptible to gummy stem blight were inoculated with two isolates of Stagonosporopsis caricae, three isolates of Stagonosporopsis citrulli, and one isolate of Stagonosporopsis cucurbitacearum to explore the host range and relative aggressiveness of each isolate. In a series of greenhouse experiments, all isolates were pathogenic to the crops tested, but disease severity differed significantly among isolates and cucurbit cultivars. There also were significant interactions between isolate and cultivar. S. citrulli isolates caused the most severe symptoms across all five cultivars and S. citrulli isolates C-68 and DbHD-10 were consistently among the most aggressive isolates on each cultivar. S. caricae isolates generally caused less severe symptoms, but W-1028 (S. caricae) was among the most aggressive isolates on Tyria cucumber. These results add to the understanding of the relationships of the three Stagonosporopsis species with various cucurbit hosts, reinforcing knowledge about the pathogenicity of the three species across cucurbit crops and the potentially high aggressiveness of S. citrulli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.