The determination of cysteine and homocysteine levels is of great current interest for the monitoring of desease states. A new colorimetric method for the simultaneous detection of l-cysteine and l-homocysteine has been developed. A fluorescein derivative reacts with the above amino acids, producing their respective thiazolidines resulting in color changes. Interference from other amino acids and proteins is minimal.
In this study, we report the use of ionic liquids as modifiers in the separation of achiral and chiral analytes in micellar electrokinetic chromatography. In this investigation, polymeric surfactants and ionic liquids were added to a low-conducting buffer solution. The polymeric surfactants used in this study were poly(sodium N-undecylelinic sulfate) and poly(sodium oleyl-l-leucylvalinate). The ionic liquids used in this study were chosen because of their high conductivity, hydrophobicity, and good solvating properties. Thus, it was expected that these ionic liquids would have the ability to assist in the separation of hydrophobic mixtures while maintaining adequate background current. Three analyte mixtures were separated using various buffer combinations of polymeric surfactant and ionic liquids. The ionic liquids were shown to improve the resolution and peak efficiency of the analytes while maintaining adequate background current.
The effect of amino acid order on chiral selectivity in polymeric dipeptide surfactants, as well as the physical properties of the surfactants, is investigated. An understanding of enantioselectivity of such dipeptide surfactants is crucial to the design of more efficient polymeric surfactants and has implications in other areas of research such as enantioselective interactions of amino acid based compounds (i.e., enzymes, hemoglobin, antibodies, etc.). It should be noted that such polymeric surfactants are not easily crystallized. Therefore, in a manner similar to the study of proteins, fluorescence spectroscopy is a powerful tool used to study the structure-function relationship of these polymeric surfactants. The microenvironments inside the core of 18 polymeric surfactants were characterized using the environmentally sensitive probes pyrene and 6-propionyl-2-(dimethylamino)naphthalene (Prodan). The surfactants examined in this study include all possible dipeptide combinations of the L-form of alanine, valine, and leucine and the achiral amino acid glycine (except glycine-glycine) as well as the single amino acid surfactants of alanine, valine, and leucine. The results of the fluorescent probe studies led to a proposed structure of the polymeric dipeptide surfactants in solution. The implications of the proposed structure for chiral selectivity were tested with two model atropisomers, (+/-)1,1'-bi-2-naphthol and (+/-)1,1'-bi-2-naphthyl-2,2'-diyl hydrogen phosphate, using capillary electrokinetic chromatography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.