In order to construct specific primers for the detection and identification of the entomopathogenic fungus Metarhizium within infected sugarcane borer (Diatraea saccharalis) larvae we analyzed the ITS1 -5.8S-ITS2 rDNA regions of strains and varieties of M. anisopliae, M. album and M. flavoviride. The PCR amplification of these regions yielded a unique fragment of approximately 540 bp for M. anisopliae variety anisopliae strains E 9 , B/Vi and C (isolated in Brazil), 600 pb for M. a. anisopliae strain 14 (isolated in Australia), 650 bp for the M. album and 600 bp for M. flavoviride strains. The PCR products were digested with different restriction endonucleases (Afa I, Alu I, Dde I, Hae III, Hpa II and Sau 3A) and the PCR-RFLP profiles showed clear differences between the species. Sequencing of the ITS-5.8S rDNA regions allowed us to design one specific primer (ITSMet: 5' TCTGAATTTTTTATAAGTAT 3') for the Brazilian M. a. anisopliae strains (E 9 , B/Vi and C) and another specific primer (ITSMet14: 5' GAAACCGGGAC TAGGCGC 3') for the Australian strain (strain 14). Amplification was not observed with M. album, M flavoviride and Beauveria bassiana strains. DNA extracted from larvae infected with the Brazilian or Australian strains were tested using the specific primers designed by us to identify the fungal strains with which the larva had been infected. The correct fungal strain was successfully detected within 48 h of the insect having been infected, showing that this molecular technique allows rapid and secure detection and identification of M. anisopliae.
The growth and autolysis of two strains of the entomopathogenic deuteromycete fungus Metarhizium anisopliae var. anisopliae were evaluated in medium containing casein or glucose as carbon source. Parameters such as economic coefficient and degree of autolysis were determined for each strain. Protease production was determined throughout the growth and autolysis phases of the cultures on medium under conditions of protease induction (in the presence of casein as sole source of carbon and nitrogen). The fungus was shown to utilize casein as a carbon/energy source in a more efficient manner than glucose. The autolysis shown by the strains was intense under both types of growth conditions, reaching up to 62.7% of the dry mass produced and started soon after the depletion of the exogenous carbon source. The relationship between the proteolytic activities of the two strains evaluated varied significantly (a maximum of 19.78 on the 5 th day and a minimum of 2.03 on the 16 th day of growth) during the various growth and autolysis phases, clearly showing that the difference between the growth curves and the difference in the kinetics of enzyme production may decisively affect the process of strain selection for protease production.
The fungus Metarhizium anisopliae is used on a large scale in Brazil as a microbial control agent against the sugar cane spittlebugs, Mahanarva posticata and M. fimbriolata (Hemiptera., Cercopidae). We applied strain E9 of M. anisopliae in a bioassay on soil, with field doses of conidia to determine if it can cause infection, disease and mortality in immature stages of Anastrepha fraterculus, the South American fruit fly. All the events were studied histologically and at the molecular level during the disease cycle, using a novel histological technique, light green staining, associated with light microscopy, and by PCR, using a specific DNA primer developed for M. anisopliae capable to identify Brazilian strains like E9. The entire infection cycle, which starts by conidial adhesion to the cuticle of the host, followed by germination with or without the formation of an appressorium, penetration through the cuticle and colonisation, with development of a dimorphic phase, hyphal bodies in the hemocoel, and death of the host, lasted 96 hours under the bioassay conditions, similar to what occurs under field conditions. During the disease cycle, the propagules of the entomopathogenic fungus were detected by identifying DNA with the specific primer ITSMet: 5' TCTGAATTTTTTATAAGTAT 3' with ITS4 (5' TCCTCCGCTTATTGATATGC 3') as a reverse primer. This simple methodology permits in situ studies of the infective process, contributing to our understanding of the host-pathogen relationship and allowing monitoring of the efficacy and survival of this entomopathogenic fungus in large-scale applications in the field. It also facilitates monitoring the environmental impact of M. anisopliae on non-target insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.