The local application of controlled hypobaric stress represents a novel means to facilitate drug delivery into the skin. The aims of this work were to understand how hypobaric stress modified the properties of the skin and assess if this penetration enhancement strategy could improve the percutaneous penetration of a macromolecule. Measurements of skin thickness demonstrated that the topical application of hypobaric stress thinned the tissue (p < 0.05), atomic force microscopy showed that it shrunk the corneocytes in the stratum corneum (p < 0.001) and the imaging of the skin hair follicles using multiphoton microscopy showed that it opened the follicular infundibula (p < 0.001). Together, these changes contributed to a 19.6-fold increase in in vitro percutaneous penetration of a 10,000 molecular weight dextran molecule, which was shown using fluorescence microscopy to be localized around the hair follicles, when applied to the skin using hypobaric stress. In vivo, in the rat, a local hemodynamic response (i.e. a significant increase in blood flow, p < 0.001) was shown to contribute to the increase in follicular transport of the dextran to produce a systemic absorption of 7.2 ± 2.81 fg·mL− 1. When hypobaric stress was not applied to the rat there was no detectable absorption of dextran and this provided evidence that this novel penetration enhancement technique can improve the percutaneous penetration of macromolecules after topical application to the skin.
Significance
Needleless delivery into the skin would overcome a major barrier to efficient clinical utilization of advanced therapies such as nanomaterials and macromolecules. This study demonstrates that controlled skin stretching (in porcine, rat, and mouse models) using a patch comprising a hypobaric chamber, to open the skin appendages, can increase the permeability of the tissue and provide a means to enable direct delivery of advanced therapies directly into the skin without the use of a needle or injection system. This technology can facilitate the self-administration of therapeutics including vaccines, RNA, and antigens, thus improving the translation of these products into effective clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.