The aim of this study was to evaluate the effects of the feed supplements monensin, virginiamycin, or a combination of the two, on intake, digestibility, and methane emission in the male cattle breed F 1 Holstein · Gir. We used a complete randomised design with four treatments consisting of the control, monensin, virginiamycin, and a combination of the two. The basal diets were composed of sorghum silage with Tanzania grass and the concentrate in the 1 : 1 ratio. Nutrient intake (P > 0.05) and the apparent digestibility coefficients (P > 0.05) were not affected by the supplementation with monensin, virginiamycin, or both. The combination of the supplements did affect methane emission (P < 0.05) when expressed in L/day, L/(kg DM), and L/(kg DM digestible). The lowest methane production was obtained with the combination of the supplements.
The aim of this study was to determine the energy metabolism and partition of lactating Gyr and F1 Holstein x Gyr (F1 HxG) cows in different planes of nutrition. Six F1 HxG and six Gyr cows with 130 days in milking (DIM) fed corn silage and concentrate were evaluated. The experiment consisted of four periods with different levels of feeding: 1st ad libitum dry matter intake (DMI) and the others with 5, 10 and 20% restricted DMI, related to the first one. An apparent digestibility assay was performed before measurements in the respiration chamber. Total feces were collected for three days. The cows were confined for 24h in the chamber in each period to determine methane and heat production (HP). F1 HxG had higher gross energy intake (GEI), metabolisable energy intake (MEI) and digestible energy intake (DEI). GE lost in feces was higher in F1 HxG (23.7% GEI) than in Gyr (20.5%) cows. Energy lost as methane and urine was similar between the groups. The metabolisability (q) was 0.67, and the efficiency of converting ME to NE (k) was 0.56. There was no difference in the energy requirements for maintenance between breeds (426.6 MJ/kg BW0,75 average value). The energy requirements for lactation were higher in F1 HxG animals due to the higher volume of milk produced, since there was no difference in energy requirements for production of one kg of milk.
The aim of this study was to describe energy partitioning in dairy crossbreed bulls fed tropical forage-based diets supplemented with different additives. Twenty F1 crossbred bulls (Holstein x Gyr) with initial and final live weight (LW) averages of 190 ± 17 and 275 ± 20 kg were fed sorghum (
Sorghum bicolour
) and Tanzania grass (
Panicum maximum
cv. Tanzania) silage (70:30 DM basis) with supplemented concentrate at a forage to concentrate ratio of 50:50. The bulls were allocated to four treatment: control groups (without additives), monensin [22 mg/kg monensin dry matter (DM)] (M), virginiamycin (30 mg/kg virginiamycin DM) (V), and combination (22 mg/kg DM of monensin and 30 mg/kg DM of virginiamycin) (MV), in a completely randomised design. The intake of gross energy (GE, MJ/d), digestible energy (DE, MJ/d), metabolizable energy (ME, MJ/d), as well as energy losses in the form of faeces, urine, methane, heat production (HE), and retained energy (RE) were measured. Faecal output was measured in apparent digestibility trial. Right after the apparent digestibility trial, urine samples were collected in order to estimate the daily urinary production of the animals. Heat and methane production were measured in an open circuit respirometry chamber. The intake of GE, DE, and ME of the animals receiving monensin and virginiamycin alone or in combination (MV) showed no differences (P>0.05) from the control treatment. However, the MV treatment reduced (P<0.05) the methane production (5.44 MJ/d) compared to the control group (7.33 MJ/d), expressed in MJ per day, but not when expressed related to gross energy intake (GEI) (CH
4
, % GEI) (P = 0.34). Virginiamycin and monensin alone or in combination did not change (P>0.05) the utilization efficiency of ME for weight gain, RE and net gain energy. This study showed that for cattle fed tropical forages, the combination of virginiamycin and monensin as feed additives affected their energy metabolism by a reduction in the energy lost as methane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.