The growth factor progranulin (granulin-epithelin precursor, PC-derived growth factor or acrogranin) regulates proliferation and migration and is implicated in cancer, development, wound repair and neurodegenerative diseases. Under most conditions fibroblasts do not express progranulin in vivo, however its expression is activated following wounding. We hypothesised that progranulin is part of a fibroblast stress response. Fibroblasts in culture were exposed to two physiologically and clinically relevant microenvironmental stresses; hypoxia (1% oxygen) and acidosis, both of which increase progranulin expression. The greatest increases occurred when hypoxia and acidosis were combined. Increased progranulin expression is not a direct response to apoptosis since it occurred under conditions of pH and hypoxia under which cell viability remained high. Low concentrations of progranulin (2 nM) protected fibroblasts from apoptosis induced by extreme acidosis (pH 5.0 and 4.0). We propose that progranulin is part of a fibroblast stress response and is cytoprotective to acidotic stress.
The African catfish Clarias gariepinus was used as a model for wound healing and tissue regeneration in a scale-less fish. A temporal framework of histological and cell proliferation markers was established after wound induction in the dorsolateral cranial region, by removing the epidermal and dermal layers, including stratum adiposum (SA). Wound closure and epidermis formation was initiated within 3 h post-procedure (hpp) with migration and concomitant proliferation of epidermal cells from the wound borders. The wound was covered by this primary epidermal front 12 hpp and fusion of the opposing epidermal fronts occurred within 24 hpp. Attachment of the newly formed epidermal layer to the underlying dermis was observed 48 hpp concomitant with a second wave of cell proliferation at the wound edge. Normal epidermal thickness within the wound was achieved 72 hpp. Formation of a basement membrane occurred by 120 hpp with concomitant emergence of the SA from the wound borders. Wound healing in C. gariepinus skin involved closure of the wound and re-epithelization through cell migration with a single wave of early cell proliferation not documented in other species. Furthermore, covering of the wound by epithelium as well as the reappearance of the basement membrane and SA occurred sooner than in other fish species.
The skin histology of Clarias gariepinus, a scaleless teleost from south central Africa, is described. The African catfish epidermis is composed of epithelial cells representing 62.3% of volumetric density (Vv), club cells (Vv = 25.7%), mucous cells (Vv = 10.5%) and melanocytes (Vv = 1.4%). Its thickness amounts to approximately 240 microm. The dermis is distinguished by two well differentiated layers, the stratum adiposum, containing prominent amounts of adipose tissue, which forms large, oblong compartments circumscribed by dense connective tissue, and the stratum compactum, which is rich in compacted collagen fibres. Compared with other catfish species the dermis thickness is considerably thicker ranging from 1.3 to 2.3 mm. The function of this type of skin is discussed.
This study assessed the effect of both embryonic thermal manipulation and dietary threonine level on the response of broilers inoculated with Salmonella Enteritidis, considering bacterial counts in the cecal contents, intestinal morphology, mucin and heat shock protein 70 gene expression, body weight and weight gain. Thermal manipulation was used from 11 days of incubation until hatch, defining three treatments: standard (37.7°C), continuous high temperature (38.7°C) and continuous low temperature (36.7°C). After hatch, chicks were distributed according to a 3x2+1 factorial arrangement (three temperatures and two threonine levels and one sham-inoculated control). At two days of age, all chicks were inoculated with Salmonella Enteritidis, except for the sham-inoculated control group. There was no interaction between the factors on any analyses. High temperature during incubation was able to reduce colonization by Salmonella Enteritidis in the first days, reducing both Salmonella counts and the number of positive birds. It also increased mucin expression and decreased Hsp70 expression compared with other inoculated groups. High temperature during incubation and high threonine level act independently to reduce the negative effects associated to Salmonella Enteritidis infection on intestinal morphology and performance, with results similar to sham-inoculated birds. The findings open new perspectives for practical strategies towards the pre-harvest Salmonella control in the poultry industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.