We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr−1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr−1 MWEG−1 to 1000 Myr−1 MWEG−1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO–Virgo interferometers, with a plausible range between 2 × 10−4 and 0.2 per year. The likely binary neutron–star detection rate for the Advanced LIGO–Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.
Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories [1, 2, 3, 4] is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity
Around the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einstein's general theory of relativity and are generated, for example, by black-hole binary systems. Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field. A quantum technology--the injection of squeezed light--offers a solution to this problem. Here we demonstrate the squeezed-light enhancement of GEO600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3-4 years. GEO600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the qualification of squeezed light as a key technology for future GW astronomy
Head-on collisions of kink and antikink solitons are investigated numerically in the classical onedimensional h(4'-1 )2 model. It is shown that whether a kink-antikink interaction settles to a bound state or a two-soliton solution depends "fractally" on the impact velocity. We discuss the results using the framework of perturbation theory which helps to clarify the nature of the fractal structure in terms of resonances with the internal shape mode oscillations. We also review the technique of collective coordinates used to reduce the infinite-dimensional system to one with just two degrees of freedom. Although we do not expect exact agreement by using such a simplification, we show that the reduced system bears a striking qualitative resemblance to the full infinite-dimensional system, reproducing the fractal structure. The maximum Lyapunov exponents are computed for the bound-state oscillations and found to be -0.3 for both the full and reduced systems, demonstrating the chaotic nature of the bound state.
This book investigates the propagation of waves in the presence of black holes. Astrophysical black holes may eventually be probed by these techniques. The authors emphasise intuitive physical thinking in their treatment of the techniques of analysis of scattering, but alternate this with chapters on the rigourous mathematical development of the subject. High and low energy limiting cases are treated extensively and semi-classical results are also obtained. The analogy between Newtonian gravitational scattering and Coulomb quantum mechanical scattering is fully exploited. The book introduces the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical black hole. It then develops the formalism of spin-weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic and gravitational scattering. Research workers and graduate and advanced undergraduate students in scattering theory, wave propagation and relativity will find this a comprehensive treatment of the topic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.