Muscle activity and human motion are useful parameters to map the diagnosis, treatment, and rehabilitation of neurological and movement disorders. In laboratory and clinical environments, electromyography (EMG) and motion capture systems enable the collection of accurate, high resolution data on human movement and corresponding muscle activity. However, controlled surroundings limit both the length of time and the breadth of activities that can be measured. Features of movement, critical to understanding patient progress, can change during the course of a day and daily activities may not correlate to the limited motions examined in a laboratory. We introduce a system to measure motion and muscle activity simultaneously over the course of a day in an uncontrolled environment with minimal preparation time and ease of implementation that enables daily usage. Our system combines a bespoke inertial measurement unit (IMU) and mechanomyography (MMG) sensor, which measures the mechanical signal of muscular activity. The IMU can collect data continuously, and transmit wirelessly, for up to 10 hours. We describe the hardware design and validation and outline the data analysis (including data processing and activity classification algorithms) for the sensing system. Furthermore, we present two pilot studies to demonstrate utility of the system, including activity identification in six able-bodied subjects with an accuracy of 98%, and monitoring motion/muscle changes in a subject with cerebral palsy and of a single leg amputee over extended periods (∼5 hours). We believe these results provide a foundation for mapping human muscle activity and corresponding motion changes over time, providing a basis for a range of novel rehabilitation therapies.
BackgroundPattern recognition technology allows for more intuitive control of myoelectric prostheses. However, the need to collect electromyographic data to initially train the pattern recognition system, and to re-train it during prosthesis use, adds complexity that can make using such a system difficult. Although experienced clinicians may be able to guide users to ensure successful data collection methods, they may not always be available when a user needs to (re)train their device.MethodsHere we present an engaging and interactive virtual reality environment for optimal training of a myoelectric controller. Using this tool, we evaluated the importance of training a classifier actively (i.e., moving the residual limb during data collection) compared to passively (i.e., maintaining the limb in a single, neutral orientation), and whether computational adaptation through serious gaming can improve performance.ResultsWe found that actively trained classifiers performed significantly better than passively trained classifiers for non-amputees (P < 0.05). Furthermore, collecting data passively with minimal instruction, paired with computational adaptation in a virtual environment, significantly improved real-time performance of myoelectric controllers.ConclusionThese results further support previous work which suggested active movements during data collection can improve pattern recognition systems. Furthermore, adaptation within a virtual guided serious game environment can improve real-time performance of myoelectric controllers.Electronic supplementary materialThe online version of this article (10.1186/s12984-019-0480-5) contains supplementary material, which is available to authorized users.
Electromyography (EMG) is the standard technology for monitoring muscle activity in laboratory environments, either using surface electrodes or fine wire electrodes inserted into the muscle. Due to limitations such as cost, complexity, and technical factors, including skin impedance with surface EMG and the invasive nature of fine wire electrodes, EMG is impractical for use outside of a laboratory environment. Mechanomyography (MMG) is an alternative to EMG, which shows promise in pervasive applications. The present study used an exerting squat-based task to induce muscle fatigue. MMG and EMG amplitude and frequency were compared before, during, and after the squatting task. Combining MMG with inertial measurement unit (IMU) data enabled segmentation of muscle activity at specific points: entering, holding, and exiting the squat. Results show MMG measures of muscle activity were similar to EMG in timing, duration, and magnitude during the fatigue task. The size, cost, unobtrusive nature, and usability of the MMG/IMU technology used, paired with the similar results compared to EMG, suggest that such a system could be suitable in uncontrolled natural environments such as within the home.
Fetal movements (FM) are a key factor in clinical management of high-risk pregnancies such as fetal growth restriction. While maternal perception of reduced FM can trigger self-referral to obstetric services, maternal sensation is highly subjective. Objective, reliable monitoring of fetal movement patterns outside clinical environs is not currently possible. A wearable and non-transmitting system capable of sensing fetal movements over extended periods of time would be extremely valuable, not only for monitoring individual fetal health, but also for establishing normal levels of movement in the population at large. Wearable monitors based on accelerometers have previously been proposed as a means of tracking FM, but such systems have difficulty separating maternal and fetal activity and have not matured to the level of clinical use. We introduce a new wearable system based on a novel combination of accelerometers and bespoke acoustic sensors as well as an advanced signal processing architecture to identify and discriminate between types of fetal movements. We validate the system with concurrent ultrasound tests on a cohort of 44 pregnant women and demonstrate that the garment is capable of both detecting and discriminating the vigorous, whole-body ‘startle’ movements of a fetus. These results demonstrate the promise of multimodal sensing for the development of a low-cost, non-transmitting wearable monitor for fetal movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.